UNION STATION EXPANSION AND RESTORATION

WASHINGTON DC

FINAL THESIS REPORT: SIGNATURE EXPRESSION

Joseph W. Wilcher III

Spring 2009

Structural Option

Faculty Advisor: M.K. Parfitt

April 7, 2009

Final Report: Signature Expression

April 7, 2009

WASHINGTON DC

ON STATION EXPANSION & RESTORATION

PROJECT TEAM:

OWNER: UNION STATION REDEVELOPMENT CORPORATION PRIME ARCHITECT: TIMOTHY HAAHS & ASSOCIATES ASSOCIATE ARCHITECT: RTKL ASSOCIATES INC. STRUCTURAL ENGINEER: TIMOTHY HAAHS & ASSOCIATES CIVIL ENGINEER: SCHNABEL ENGINEERING MEP ENGINEER: RTKL ASSOCIATES INC.

GENERAL CONTRACTOR: CLARK CONSTRUCTION

ARCHITECTURE:

- MIX USE WHICH INCLUDES AMTRAK STATION, MARC, WASHINGTON DC'S METRO, OFFICE SPACE, AND PARKING
- TRACKS TRAVELING THROUGH THE BUILDING
- NORTHWEST CORNER OF EXPANSION HAS A "CURTAIN" PERFORATED STAINLESS STEEL PANELS
- ROOF IS A 7" THICK P/T SLAB DUE TO PARKING AND RELIES ON 8 DRAINS TO PREVENT PONDING

M.E.P. SYSTEMS:

- 1600 CFM AIR HADLING UNITS TO BE INSTALLED IN OFFICE SPACES, SECURITY AREA, AND
- THROUGHOUT EXPANSION
- 3 PHASE, 4 WIRE, 480 V NEW GENERATOR LOCATED ON GROUND FLOOR WITH POWER SUPPLIED FROM
- OFFICE SPACES, MEZZAINE LEVEL, AND ALL STAIR TOWERS HAVE SPRINKLER SYSTEMS INSTALLED WHILE PARKING AREAS WILL NOT BE SPRINKLED

ARCHITECTURAL ENGINEERING

GENERAL BUILDING DATA:

LOCATION: BLOCK 720 ALONG H STREET OCCUPANCY: MIXED USE SIZE: 329,000 SQUARE FEET HEIGHT: 5 STORIES ABOVE GRADE WITH A MAX HEIGHT OF 88 FEET AND 2 INCHES DELIVERY METHOD: DESIGN - BID - BUILD

STRUCTURAL SYSTEM:

- TWO WAY POST TENSION CAST-IN-PLACE FLOOR SYSTEM SUPPORTED BY 20 COLUMNS ON EACH FLOOR
- SEISMIC-FORCE-RESISTING FRAME SYSTEM IS ORDINARY REINFORCED CONCRETE MOMENT FRAMES
- CONCRETE PILES & COLUMNS REST ON SPREAD FOOTERS THAT SUPPORT THE STRUCUTRE FROM THE TRAIN TRACKS THAT TRAVEL BELOW

JOSEPH W. WILCHER III STRUCTURAL OPTION

www.engr.psu.edu/ae/thesis/portfolios/2009/jww5003

Page 1 of 131

Adviser: M. K. Parfitt	Final Report: Signature Expression	April 7, 2009
TABLE OF CONTENTS		
Acknowledgments.		4
Executive Summary	/	5
Union Station Histo	ry	6
Existing Structural S	System	
Foundation		7
Existing Flo	or System	7
Lateral Sys	tem	8
Problem Statement		
From Desig	ın Firm's View	9
From Autho	or's View	9
Thesis Criteria Goa	ls	
Structural Depth		
Location of	Trusses	
Composite	Steel Floor System [Preliminary Sizes]	
Composite	Steel Floor System [RAM]	
Columns or	n Mezzanine through Third Floor	
Location of	Trusses [Additional Discussion]	
Forces with	in Truss Members	
Determinat	ion of Preliminary Member Sizes for Trusses	
Curved Ter	nsion Members in Trusses	21
Lateral Res	isting System	
Truss Conr	ections [M.A.E. Criteria]	
Final Memb	pers for Trusses	
Foundation	Verification	
Structural E	Depth Conclusion	

Final Report: Signature Expression

April 7, 2009

TABLE OF CONTENTS CONTINUED

Archit	tectural Breadth	
	Architectural Design of King Post Trusses	
	Verification of Vehicular Circulation	
	Redistribution of Waiting Terminals	
	Architectural Breadth Conclusion	
Lighti	ing Breadth	
	Selection of Luminaries to Highlight Trusses	40
	Illuminance Categories & Required Foot Candles	41
	Selection of Luminaries for Waiting Terminals	41
	Lumen Method for Waiting Terminal	42
	Lighting Breadth Conclusion	43
Concl Appei	lusion	44
Concl	lusion	44
Concl Appe	Iusion ndix A: Composite Steel Structural Floor Plans.	
Concl Appei	Iusion Indix A: Composite Steel Structural Floor Plans B: Preliminary Composite Steel Calculations	44
Concl Appei	lusion ndix A: Composite Steel Structural Floor Plans B: Preliminary Composite Steel Calculations C: Loads Within Truss 2 Members	44
Concl	 Iusion Indix A: Composite Steel Structural Floor Plans B: Preliminary Composite Steel Calculations C: Loads Within Truss 2 Members D: Preliminary Truss 2 Member Sizes 	
Concl	Iusion Indix A: Composite Steel Structural Floor Plans B: Preliminary Composite Steel Calculations C: Loads Within Truss 2 Members D: Preliminary Truss 2 Member Sizes E: Curved Tension Members within Truss 2	44 44 57 63 7
Concl	Iusion Indix A: Composite Steel Structural Floor Plans B: Preliminary Composite Steel Calculations C: Loads Within Truss 2 Members D: Preliminary Truss 2 Member Sizes E: Curved Tension Members within Truss 2 F: Lateral Resisting System Calculations	44 44 55 63 71 71
Concl	Iusion Indix A: Composite Steel Structural Floor Plans B: Preliminary Composite Steel Calculations C: Loads Within Truss 2 Members D: Preliminary Truss 2 Member Sizes E: Curved Tension Members within Truss 2 F: Lateral Resisting System Calculations G: Drift Results	44 44 48 57 63 74 74 74 88
Concl	Iusion Indix A: Composite Steel Structural Floor Plans B: Preliminary Composite Steel Calculations C: Loads Within Truss 2 Members D: Preliminary Truss 2 Member Sizes D: Preliminary Truss 2 Member Sizes E: Curved Tension Members within Truss 2 F: Lateral Resisting System Calculations G: Drift Results H: Steel Connections	44 44 57 63 77 79 89 92
Concl	Ilusion Indix A: Composite Steel Structural Floor Plans B: Preliminary Composite Steel Calculations C: Loads Within Truss 2 Members D: Preliminary Truss 2 Member Sizes E: Curved Tension Members within Truss 2 F: Lateral Resisting System Calculations G: Drift Results H: Steel Connections I: Final Member Sizes for Trusses	44 44 44 57 63 77 79 79 89 92 1
Concl	Iusion Indix A: Composite Steel Structural Floor Plans B: Preliminary Composite Steel Calculations C: Loads Within Truss 2 Members D: Preliminary Truss 2 Member Sizes E: Curved Tension Members within Truss 2 F: Lateral Resisting System Calculations G: Drift Results H: Steel Connections I: Final Member Sizes for Trusses J: LED Specifications	44 44 48 57 63 77 79 79 79 89 92 11 11
Concl	Indix A: Composite Steel Structural Floor Plans B: Preliminary Composite Steel Calculations C: Loads Within Truss 2 Members D: Preliminary Truss 2 Member Sizes E: Curved Tension Members within Truss 2 F: Lateral Resisting System Calculations G: Drift Results H: Steel Connections I: Final Member Sizes for Trusses J: LED Specifications K: IESNA Requirements	44 44 48 57 63 77 75 89 92 11 12
Concl	Iusion Indix A: Composite Steel Structural Floor Plans B: Preliminary Composite Steel Calculations C: Loads Within Truss 2 Members D: Preliminary Truss 2 Member Sizes E: Curved Tension Members within Truss 2 F: Lateral Resisting System Calculations G: Drift Results H: Steel Connections I: Final Member Sizes for Trusses J: LED Specifications K: IESNA Requirements L: Avante 2x4 Specifications	44 48 48 57 63 77 75 89 92 17 17 12 12

Final Report: Signature Expression

ACKNOWLEDGMENTS

The author would like to extend acknowledgments and gratitude to the following individuals, faculty, professions, and firms for their time and generous aid with the following thesis:

RTKL Associates, Inc.

Clark Construction

Timothy Haahs & Associates:

Kevin Carrigan, PE

Sun-Hee Wang, PE

The Pennsylvania State University:

Professor Parfitt

Dr. Hanagan

Dr. Memari

The entire AE faculty and staff

A special thanks to all friends, colleagues, peers, and family of the author.

The following thesis is dedicated to the author's parents, Joseph W. & Carolyn N. Wilcher. Thank you for the guidance and life lessons you have instilled upon me for over the last twenty-two plus years.

Final Report: Signature Expression

April 7, 2009

EXECUTIVE SUMMARY

In this final thesis report, the thesis proposal of creating a signature expression for the expansion to Union Station was carried out in full detailed. Using the design of the king post truss as the concept of the signature expression (located on the ground floor of the expansion), a full structural depth with an architectural and lighting study was accomplished where all three areas of architectural engineering focused on the trusses.

Changing the floor system from post-tension to composite steel was the first step in the structural depth portion of the thesis (starting on page 11). From there, multiple designs for the trusses were created by the author in order to determine a design that not only would be an expression in architectural, but as well in structural engineering (All of the design based on the look of the trusses can be found in the architectural breadth). Using standard truss analysis with the addition to using curved tension member as the brace members gave a unique way of looking at a truss in structural engineering. Two of the nine trusses are the focus within the body of the structural depth to show the process the author took in doing the structural calculations for each one.

Brace frames replaced the existing ordinary concrete moment frames as the new lateral system for the expansion to Union Station which are part of three of the nine trusses (refer to page 23). Each one of the trusses pin connections were analyzed as well as a heavy brace connection on one of the trusses. This was designated as the M.A.E. criteria for the thesis. Finally spot checks on the foundation were done to verify the trusses transferred the load from the upper floors down to the track level and then into the ground without any concerns in changing the existing foundation system.

As mentioned above, the design process of making the trusses look one of a kind is found in the architectural breadth portion of the thesis. On top of the design of the trusses, the author also looked at the vehicular circulation the busses need in order to maneuver and park under the trusses. Also, the waiting terminal on the ground floor was moved from its original location to help express the trusses in the expansion.

Within the lighting breadth of the thesis, LEDs were selected to highlight the trusses and full calculations for the Lumen Method were done in order to determine the amount of luminaries needed for one of the waiting terminals.

After each section of the report, a conclusion has been written to talk if the criteria goals for each section were meet (refer to page 10) and if not, the author talks about what could have been different in the process taken. All calculations for each of the breadths as well as the depth can be found in Appendixes A through M at the end of the report.

Final Report: Signature Expression

April 7, 2009

UNION STATION HISTORY

Located in the heart of Washington DC's commercial and manufacturing district, Union Station was built in the mid 1980's as one of first major public transportation buildings in the United States. One can purchase an Amtrak ticket to travel nationally on the railroad or ride a greyhound bus to travel to the desired location. The DC metro also travels through the station allowing local pedestrians and tourists to travel around our nation's capital.

Since the completion of Union Station, other renditions of the building have been designed and built in other major cities throughout the United States (Dallas, St. Louis, Los Angles, etc.). Each building was given a unique style of architecture to highlight the building in the city it resides in. For the original building of Union Station, a grand Glass Curtain wall is located along the west elevation of the building. This architectural feature allows guest and workers within the building to look at the sites of Washington DC while either riding up in the elevators or the escalators, taking the stairs, working in the office spaces, or sitting in the lobbies waiting to travel by means of one of the transportations offered.

Figure i: Union Station's Glass Curtain Wall

Figure ii: View Within Curtain Wall

EXISTING STRUCTURAL SYSTEM

Foundation:

Union Station's expansion main foundation system consists of concrete piles, which carry the load from the train track stations to the soil and supportive columns for all the levels above the track level. Each one rests upon a square footer that is either six feet or twelve feet in length and width, with a height of two feet.

All the piles are located between the eight locomotive rail ways that are part of Union Station. Maximum diameter size of the columns and the piles are 1 ½' and are spaced 22'-0" spanning in the north-south direction of the building between the railroads.

From the provided geotechnical report, the net soil bearing capacity for the site is 2000 PSF, which is considered weak for the soil. Fine to coarse sandy clay fill is the soil designation on the site for Union Station.

Existing Floor System:

Union Station's typical floor system is a two-way post-tension cast-in-place concrete slab with a thickness of 7". All the beams and girders are post-tension cast-in-place as well. In Union Station, the beams span a length of 63'-0". The girders located in the expansion, carry the load from the beams to the columns and have a typical span of 24'-4" throughout the expansion. The concrete compressive strength for the slabs, beams, and girders is $f_c = 5000$ psi while the columns supporting the floors are cast-in-place with a compressive strength of 8000 psi. It is to be noted that the floor systems for the expansion and the existing structure for Union Station do not connect with each other.

For the Ground Level, a rigid 6 $\frac{1}{2}$ " concrete slab was used for majority of the floor. A composite design located along the west elevation was utilized to help reduce the weight within the weakest are of the site. A 5" light weight concrete slab over 1 $\frac{1}{2}$ " gage LOK-Floor was used which makes the ground floor total thickness to be 6 $\frac{1}{2}$ ". Shear studs sized at $\frac{3}{4}$ " x 4 $\frac{1}{2}$ " were used in the composite floor design. Typical member size for the beams is W27x84 which span 63'-0" and tie into a W33x118 girder. Each girder ties into the concrete columns that are part of the foundation system.

There are two typical bay sizes located in the expansion of Union Station, $63'-0" \times 27'-6"$ and $63'-0" \times 40'-0"$. Since the tracks running through Union Station were the major consideration in the design as well as the bus terminal, the use of long spans was concluded as the best approach for the design.

Final Report: Signature Expression

Lateral System:

Union Station's lateral load system is composed of ordinary reinforced concrete moment frames (See Figure 1 to the right). Lateral loads, as well as the gravity loads, reach the foundation of Union Station by first traveling through the beams, then carry through the girders which connect to the columns. From there, all loads travel down in the columns to the ground level and then the columns take all the loads into the foundation. Not all beams and girders take part of the lateral system in Union Station. The highlighted members within Figure 1 represent the beams and girders that act as part of the lateral system. Intermediate beams and girders are indicated as the black and white members within the figure.

Figure 1: Moment Frames in Union Station Expansion

An expansion joint was placed between column lines 7 and 7-1 is located between the existing structure and the expansion to Union Station (Refer to Figure Figure 2). As stated in the addendum, there is also an expansion joint within the expansion. This joint is used to create two separate structures that can move independent of each other due to forces acting upon the building.

PROBLEM STATEMENT

From Design Firm's View:

From the very start of the design for the expansion to Union Station, two major concerns for the building were used as a starting point. First, there had to be large open spaces with a minimum amount of columns for the track, ground, and mezzanine level. This is due to having a bus terminal located on the ground floor since and the owner wanted an open feeling for the mezzanine level. Second, the weight of the building should be at a minimum since the soil located on the site is considered poor. These two considerations lead to the use of the post-tension floor system and above average column sizes throughout the entire building.

From Author's View:

While the author agrees with the concerns the design firm came up with for the expansion to Union Station, another issue should have been addressed as well. While trying to create a building expansion that was cost-savings and fit within the two major concerns, there was no major attempt to create a signature expression for the expansion to Union Station. The author believes that even though the glass curtain wall of the existing structure stands out as an expression of architecture, the expansion to Union Station should have its own architecture feature since it is own building as well.

Final Report: Signature Expression

THESIS CRITERIA GOALS

Using the areas of concern from the design firm as well as the author's own point of view, the following criteria was established in order to complete the over goals of this thesis.

- 1.) Redesign floors mezzanine through third with a new structural system.
- 2.) Design a one of a kind transfer level that is located on the ground floor while incorporating the style of the king post truss.
 - a. While the trusses act as the transfer system, create an architectural expression with the trusses by using different shapes and connections that show the trusses were solely made of the expansion to Union Station.
 - b. Ignore the cost of how much the custom trusses and new floor system will cost since the author believes how important it is to have an architectural expression.
- 3.) Incorporate brace frames as the new lateral system for the expansion to Union Station.
- 4.) Verify the foundation of Union Station can support the new structure.
- 5.) Determine the vehicular circulation of the buses will not be affected by the truss designs.
- 6.) Incorporate the waiting/lobby area on the ground floor with the architecture of the trusses.
- 7.) Incorporate two new lighting layouts:
 - a. Create a custom lighting scheme that will now only illuminate the trusses but highlight them to looking aesthetically pleasing.
 - b. Replace the existing luminaries within the bus terminal with new, energy efficient ones.

All seven goals will be attempted by the author in order to give the expansion to Union Station not only to meet the goals of the owner, but to make the people who work and step into the expansion remember the one of a kind structural and architectural feature.

Final Report: Signature Expression

April 7, 2009

STRUCTURAL DEPTH

Location of Trusses:

Before any redesigning of the upper levels was started, the first task at hand was to determine where the transfer trusses would be placed on the ground floor. Keeping in mind there will be buses traveling and parking on the ground level, the trusses had to be placed where there would be minimal impact. The author concluded the best location for the trusses would be where the existing columns are located on the ground floor. Figure 3 below indicates where the king post trusses would be located (blue lines indicate the trusses while the red line represents the expansion joint).

Figure 3: Location of Transfer Trusses on Ground Floor

Five trusses would be located within Structure 1 of the expansion to Union Station and four would be in Structure 2. Each truss would span the north-south length of the building which is 189'-0" and would be a height of 18'-0". Visual inspection of Figure 3 shows that some of the trusses will be located where buses must turn and park (Refer to the Architectural Breadth portion). Since the location of the king post trusses has been determined, the next step was to design a new structural floor system for the mezzanine level through the third floor.

Final Report: Signature Expression

April 7, 2009

Composite Steel Floor System [Preliminary Sizes]:

Since one of the major concerns for the expansion for Union Station was having large open floor plans on the ground and mezzanine level, the design team that created the building decided to keep the open plan on each level. On the upper floors however, a large open space is not necessarily required since there is only office space and parking. The author believes the use of a composite steel floor system is a valuable alternative structural gravity system to the post tension slab. A composite system not only can provide long spans, but also can reduce the slab thickness as well giving each level a higher floor to ceiling height.

Starting with the existing floor plans, a new column grid and beam layout for the gravity system was created. Figure 4 on the right shows a typical plan for levels one through three and the roof as well. In the north-south direction of the expansion, each column is spaced at 31'-6" while there are multiple spans in the east-west direction (49'-0" is the longest span for the east-west direction for both structures). Since the mezzanine level is shorter in length in the east-west direction, the only difference in the layout is the short span of 20'-0" located at the very top of structure two (Refer to Figure 5 for a visual representation). To view each typical floor with column markers, see Appendix A, Figures 1 & 2.

The first step the author took in designing each beam and girder for the gravity system was determining the required loads for each floor per structure. Table 1 on page 13 of this report shows the dead and live loads used in accordance with ASCE 7-05. For this thesis project, no live load reductions were taken into account. The author wanted to calculate the worst case scenario.

Figure 4: Composite System (Levels 1 -Roof)

Each beam and girder for levels mezzanine to the roof was designed by hand using LRFD in conjunction with a calculation method learned in the advanced steel design course at The Pennsylvania State University. The bay size of 31'-6"

Final Report: Signature Expression

April 7, 2009

x 49'-0" will be used as the example throughout this portion of this thesis as a guide to show the process of how the final members were selected.

Figure 5: Composite System (Mezzanine Level)

DEAD LOADS										
Level	Roof	3	2	1	Mezzanine	Ground				
Light Weight Concrete	110 pcf	110 pcf								
Steel	490 pcf	-								
M.E.P.	10 psf	10 psf								
Finishes & Misc.	5 psf	5 psf								

	LIVE LOADS											
Level	evel Roof 3 2 1 Mezzanine											
Landings	100 psf	100 psf	100 psf	100 psf	100 psf	100 psf						
Lobbies		1.4	100 psf	100 psf	100 psf	100 psf						
Mechanical	5 7 5	272	10	-	-	150 psf						
Office		14	50 psf	50 psf	50 psf	-						
Parking	50 psf	50 psf	50 psf	50 psf	-	-						
Partition	-	-	10 psf	10 psf	10 psf	-						
Stairs	100 psf	100 psf	100 psf	100 psf	100 psf	100 psf						

 Table 1: Gravity Loads from ASCE 7-05

Before the beams and girders were designed, a metal deck had to be selected for the composite steel

floor system. Using the Vulcraft Steel Roof & Floor Deck catalog, a 2VLI16 metal deck with a 4.25" thick concrete slab was selected giving the total thickness to be 6 $\frac{1}{4}$ ". Since original post-tension slab on the mezzanine to the roof was 7 $\frac{1}{2}$ ", the floor thickness of the expansion of Union Station was increased by 1 $\frac{1}{4}$ ". Lightweight concrete was selected for the slab to help reduce the overall weight of the building and since the intermediate beams are spaced at 7'-10 $\frac{1}{2}$ " which is less than the maximum spacing of 12'-6" (To view the criteria designated to select the 2VLI16 metal deck can be found in Appendix B, Figure 1). The metal deck will span in the north-south direction of the expansion to Union Station, which is indicated by the arrow located on Figure 6.

Figure 6: 31'-6" x 49'-0" Bay

Running in the 49'-0" direction of Figure 6 (See above) are the beams and the girders are the members that are 31'-6". The author selected members that would meet the construction, live load, and total deflection criteria set by the American Institute of Steel Construction (AISC). Using partial composite design, the number of shear studs required to transfer the loads from the concrete to the steel members was calculated as well by the requirements by AISC. Table 2 below shows the beam and girder member sizes calculated. To view the calculations for the beams and girders located in Table 2, see Appendix B, Calculations 1 through 10.

31'-6" x 49'-0" Interior Bay Beams: Strucutre 1 [Preliminary Calculations]											
Level	Roof	3rd	2nd	1st	Mezz.						
Member	W24x55 <40>	W21x55 <24>	W21x55 <24>	W21x55 <24>	W21x55 <24>						
	31'-6" x 49'-0" Interior Bay Girders: Strucutre 1 [Preliminary Calculations]										
Level	Roof	3rd	2nd	1st	Mezz.						
Member (G)	W24x94 <42>	W24x94 <42>	W24x94 <42>	W24x94 <42>	W24x94 <42>						
Member (H)	W24x76 <46>	W24x76 <46>	W24x94 <42>	W24x94 <42>	W24x94 <42>						

 Table 2: Preliminary Typical Beam & Girder Sizes

Final Report: Signature Expression

April 7, 2009

Composite Steel Floor System [RAM]:

Using the same loads from Table 1, dimensions for bays in Figures 4 & 5 and now having the openings in the plans for the stairs and elevators, RAM Structural System was used to calculate the composite members to determine what sizes will be used. Figure 7 is the plan used for the roof, third, second, and first floor plan while Figure 8 is the plan for the mezzanine level. The location of the stairs and elevators are not the same as the existing expansion to Union Station. For more details on why the author moved some of their locations, refer to the Architecture Breadth portion of this thesis located on page 32.

Figure 7: Roof, Third, Second, First Floor Plan

After inputting all the loads, including a wall load of 35 psf, RAM Structural System was used to determine the member sizes and number of shear studs for both the composite beams and girders. Using the same interior as the one in the preliminary size section of the structural depth, Table 3 shows the sizes RAM determined were adequate for the expansion to Union Station.

	31'-6" x 49'-0" Interior Bay Beams: Strucutre 1 [RAM]										
Level	Roof	3rd	2nd	1st	Mezz.						
Member	W18x40 <53>	W18x40 <26>	W18x40 <40>	W18x40 <40>	W18x40 <40>						
	31'-6" x 49'-0" Interior Bay Girders: Strucutre 1 [RAM]										
Level	Roof	3rd	2nd	1st	Mezz.						
Member (G)	W27x84 <48>	W27x84 <38>	W27x84 <38>	W27x84 <38>	W27x84 <38>						
Member (H)	W24x76 <66>	W24x76 <34>	W24x76 <48>	W24x76 <48>	W24x76 <48>						

Table 3: RAM Beam & Girder Sizes

Comparing the preliminary sizes to the ones calculated by RAM, one can see the beams used in RAM are smaller and lighter than the ones in the preliminary section. The reason for this is RAM used fully composite design instead of partial (as the author used in the hand calculations). Also, the RAM members have a larger camber than the members done by the author. The W18x40 beams have a camber of 2 ¼" while the W21x55 only have a ¼" camber. Since determining whether having a larger camber would cost more than a deeper and heavier beam was not part of this thesis, the author will use the beam sizes that were determined by RAM since they are smaller in depth and lighter in weight.

For the girders, the sizes are almost identical except the members in the G column line are deeper and heavier in RAM than the preliminary sizes. Since RAM could have another method of deterring the girders, the author will accept the values from RAM and use them as the final members for the expansion to Union Station.

Columns on Mezzanine through Third Floor:

After the beams and girders were designed in RAM, the columns that will transfer the gravity loads from each level had to be determined. RAM Structural System was used to calculate the member sizes for the columns. Looking at the same interior bay used as the example in this portion of this thesis (Figure 6 located on page 14), Table 4 on the following page shows the sizes of the columns used along grid lines G and H.

Final Report: Signature Expression

April 7, 2009

	Column Line G											
Level	3rd	2nd	1st	Mezzanine								
Member	W14x61	W14x82	W14x109	W14x132								
Interaction	0.68	0.85	0.91									
	(Column Line H										
Level	3rd	2nd	1st	Mezzanine								
Member W14x53		W14x74	W14x99	W14x176								
Interaction	0.83	0.85	0.82	0.61								

 Table 4: Member Sizes along Grid Lines G & H

Location of Trusses [Additional Discussion]:

Once the composite steel gravity system was designed, the author went back to make sure where the original locations of the trusses were would line up with the proposed new column line. After investigating the floor plans, the trusses are directly below each column line of the composite steel system. Placing the trusses below the column makes the transfer system much more efficient. Figure 9 shows the trusses (blue hatching symbol) on top of the column line (black solid squares).

Figure 9: Column Line over Location of Trusses

Final Report: Signature Expression

April 7, 2009

Forces within Truss Members:

Before continuing on with the truss portion of this thesis, the author would like to make a statement to the reader. Since this portion of the thesis deals with the structural analysis of the trusses, all the architectural criteria the author used can be found within the Architectural Breadth portion. Also, since there is a total of nine trusses being designed for the expansion to Union Station, the author will use only two throughout this portion of the thesis because they are all similar to each other. It should be noted that all trusses were designed by the author. Truss 1 and 2, which is noted on Figure 10, will be the designated trusses used.

Figure 10: Location of Truss 2

To begin determining the forces within each truss member, the loads acting on the trusses from the four levels above the ground floor had to be resolved. Using RAM Structural, the point loads from Table 5 were figured from the columns on the mezzanine level. By inspection of the values from Table 5, the forces that are acting upon Truss 2 are significantly large. This makes sense because there are four levels the trusses must support and transfer the loads down to the track level then to the foundation.

Final Report: Signature Expression

April 7, 2009

		Truss Po	int Loads W	Vithin Struct	ure 1		
			Truss	1			
Column Line	1	2	3	4	5	6	7
Loads (Kips)	337.90	578.80	578.80	578.80	578.80	307.83	72.64
			Truss	2			
Column Line	1	2	3	4	5	6	7
Loads (Kips)	669.69	1125.06	1125.06	1125.06	1125.06	835.23	388.98
			Truss	3			
Column Line	1	2	3	4	5	6	7
Loads (Kips)	739.67	1186.48	1186.48	1186.48	1186.48	1186.48	739.67
			Truss	4			
Column Line	1	2	3	4	5	6	7
Loads (Kips)	900.71	2115.88	2115.88	2115.88	2003.01	2044.84	900.71
			Truss	5			
Column Line	1	2	3	4	5	6	7
Loads (Kips)	300.22	501.36	501.36	501.36	302.57	381.97	300.22
		Truss Po	int Loads W	Vithin Struct	ure 2		
			Truss	6			
Column Line	1	2	3	4	5	6	7
Loads (Kips)	372.47	622.94	622.94	622.94	622.94	622,94	372.38
			Truss	7			
Column Line	1	2	3	4	5	6	7
Loads (Kips)	728.85	1169.08	1169.08	1169.08	1169.08	1056.81	613.60
			Truss	8			
Column Line	1	2	3	4	5	6	7
Loads (Kips)	667.22	1120.94	1120.94	1120.94	1120.94	761.28	320.18
			Truss	9			
Column Line	1	2	3	4	5	6	7
Londo (Kine)	10.000		100 A		and the second second	100 ct 100	

 Table 5: Loads to Trusses From Above Levels

Using the loads from Table 5, a detailed spread sheet was used to determine the forces within each member for the trusses as well as the support reactions from the columns located on the track level. In addition to the spreadsheet, STAAD Pro was used to verify the forces in the members as well as the reaction values. Since the members for the trusses are unknown as well as the area, the author inputted a one square foot area in STAAD, the values came out to be within 1% of the spreadsheet calculations. To view the spreadsheet and STAAD Pro report of Truss 2, turn to Appendix C, Calculations 1 through 13.

Table 6 below shows the forces within each member of Truss 2. The reader should realize the image used is not the final image of the truss used, but as the design at the time when the loads were determined (See the Architectural Breadth of the thesis to learn more about the design of the trusses). After each load in Table 6 are the directions how the loads act within the members. Tension is represented as [T] and [C] means compression.

Table 6: Loads in Truss 2 Members

STRUCTURE 1 TRUSS 2 Member 11 Member WT15x130.5 WT15x130.5 W14x176 Member 1 Member 6 Member 11 Member 16 (2) HSS10x0.50 WT15x130.5 Member 7 W16x31 Member 12 W14x176 Member 17 (2) HSS10x0.50 Member 2 Member 3 WT15x130.5 Member 8 W16x31 Member 13 W14x176 Member 18 (2) HSS10x0.50 Member 4 WT15x130.5 Member 9 W14x176 Member 14 W14x176 Member 19 (2) HSS10x0.50 WT15x130.5 Member 15 Member 20 Member 5 Member 10 W14x176 (2) HSS10x0.50 (2) HSS10x0

Determination of Preliminary Member Sizes for Trusses:

Table 7: Preliminary Sizes for Truss 2

Following the criteria set by AISC, the author used the thirteenth edition of the steel to determine the preliminary sizes of the member for the king post trusses. Each column and top chord of each truss was selected using Part 4 of the manual by taking the un-braced length in the y-axis and making sure $\Phi P_n \ge P_u$. Since both the columns and top chords are in compression, Part 4 of the manual looks at members in compression. Both bottom chords were determined by using Part 5 of the manual since this part looks at members in tension. For the four curved bracing members in tension (Members 15, 16, 19, & 20), the preliminary sizes were selected from Part 1 of the manual by calculating the required I needed for the load then looking up a member that had a greater I. The two bracing members in compression were

Final Report: Signature Expression

April 7, 2009

determined by the same method as the bracing members in tension. Table 7 shows the preliminary member sizes selected for Truss 2. A variety of shapes were selected for the trusses, which is explained in the Architectural Breadth of this thesis. To view the calculations for determining the preliminary sizes in Truss 2, refer to Appendix D, Calculations 1 through 7.

Curved Tension Members In Trusses:

Using curved tension members in the trusses, each one must be looked at to make sure that the moment created by the forces within the member will not cause the shape to go into a compression state. Taking the preliminary HSS sizes, the author created the curved members within STAAD. By making twenty-six increments along the radius of the arced shape as Figure 11 shows on the left, this allows to examine where the maximum moment will occur.

Figure 12: Moment within Tension Member 19

Once each section off the HSS members was modeled in STAAD as well as the forces causing the member to be in tension, an analysis was run on the worse tension member in Truss 2 which is Member 19. The reason for doing the worst case scenario is if the selected HSS member passes, then each tension chord in Truss 2 will pass as well. Figure 12 on the left shows the moment diagram created by the member after the analysis was done it STAAD. One can see how the moment diagram is the shape of a parabola acting in compression. This shows how the moment wants to cause the member to bend into a compression due to tension.

Final Report: Signature Expression

A closer inspection of the STAAD results also shows that the maximum moment occurs within the eleventh segment from the pin connection at the bottom of the member, which can be viewed in Appendix E. To determine the reaction force, R, the maximum moment was divided by the lever arm in the y-direction (Refer to Figure 13). This determined the force within the x-direction (R_x) and taking this value and dividing it by the angle created by the two ends points of the member, 30° , the value R is determined.

Figure 13: Determination of R

Going into the AISC Steel Manual and using Table 4-5, the ΦP_n can be determined by using the KL length where R is located. For Member 19 of Truss 2, the un-braced length is 23.42 ft and after interpolation within Table 4-5, ΦP_n comes out to be 343 Kips which is greater than 313 Kips for R. Therefore the preliminary size HSS10.0x0.500 can be used for the curved tension member throughout Truss 2. To view the calculations for ΦP_n , turn to Appendix E, Calculation 1.

Final Report: Signature Expression

April 7, 2009

Lateral Resisting System:

Figure 14: Isometric View of Lateral Resisting System

With a composite steel floor system being used instead of the post-tension system, a new lateral system was incorporated into the expansion of Union Station. Steel brace frames with a response modification factor (R) of 3.25 were selected to replace the existing concrete moment frames (R = 3). A total of eight brace frames, four in each structure (two in the north-south direction as well as the east-west), were placed within the expansion. Figure 15 shows the frames in plan view and Figure 14 above shows an isometric view of the expansion to Union Station. From Figure 14, the bottom of the columns is where the ground floor is located. Therefore the ground level and the brace frames is shown in the view. One can then observe from Figure 10 (Page 18) that Frames 1, 2, and 3 are part of Trusses 1, 2, and 6. Each of the trusses with the brace frames as part of them as well as the remaining five frames had to be analyzed to determine if each frame can withstand the forces from wind and seismic. For this portion of the report, Frame 1 which is part of Truss 1 will be looked at in depth. All other Frame calculations can be found in Appendix F.

Final Report: Signature Expression

Selecting preliminary sizes that the author believed could withstand the lateral forces were modeled in RAM Frame and then the members that were undersized were replaced with members that met design requirements. After getting the member sizes for the frames, the author used SAP2000 to determine the required stiffness for each frame. Figure 16 shows the member sizes selected for Truss 1 and Frame 1. Within the truss, the two braces on the ground floor are W14x257. Since these members have to carry both gravity and lateral loads, this is the reason for having such heavy members. Going up the brace frame, the majority of the braces are W14x99. The author wanted to keep the same shape as much as possible throughout Frame 1 and all the others. Going down each level, the columns increase in weight to take more loads from the level above them.

Figure 16: Member Sizes for Brae Frame 1

After the relative stiffness of each frame was determined, center of rigidity, direct, torsional, and net forces due to wind and seismic loads were calculated using RAM and also by hand as well. To understand what each of the previously mentioned definitions are, review technical report three written by the author. All calculations regarding the definitions are located within Appendix F.

Once the net forces due to wind and seismic were determined, each load for both forces was placed on each frame in SAP. Then each frame was analyzed one at a time to verify the serviceability of each frame. Tables 8 and 9 on the following page represent the allowable drift criteria for each floor and the entire expansion as well as the calculated drifts done by SAP. Looking at both tables, one can see that the seismic drift controls from the roof to the first level and the mezzanine level drift is controlled by the wind. These results are almost identical to what was happening in the expansion to Union Station when the ordinary concrete moment frames were being used. Since the response modification factor difference is 0.25 between the two systems, the values obtained are reasonable.

April 7, 2009

	Controlling Wind Drift: Frame 1											
Story	Story Height (ft)	Story Drift (in)	All	owable S D _{wind} =	tory Drift (in) H/400	Total Drift (in)	Allowable Total Drift (in) D _{wind} = H/400					
Roof	11.500	0.041	<	0.345	Acceptable	0.509	<	1.94	Acceptable			
3rd	11.500	0.049	<	0.345	Acceptable	0.468	<	1.595	Acceptable			
2nd	11.500	0.140	<	0.345	Acceptable	0.419	<	1.25	Acceptable			
1st	12.250	0.150	<	0.368	Acceptable	0.278	<	0.905	Acceptable			
Mezzaine	17.917	0.129	<	0.538	Acceptable	0.129	<	0.5375	Acceptable			

Table 8: Controlling Wind Drift for Frame 1

	Controlling Seismic Drift: Frame 1											
Story	Story Height (ft)	Story Drift (in)	All	lowable S D _{SEISMIC} =	tory Drift (in) = 0.020h _{sx}	Total Drift (in)	Allowable Story Drift (in) D _{SEISMIC} = 0.020h _{sx}					
Roof	11.500	0.129	<	0.230	Acceptable	0.738	<	1.293	Acceptable			
3rd	11.500	0.140	۸	0.230	Acceptable	0.609	<	1.063	Acceptable			
2nd	11.500	0.201	<	0.230	Acceptable	0.469	<	0.833	Acceptable			
1st	12.250	0.189	<	0.245	Acceptable	0.269	<	0.603	Acceptable			
Mezzaine	17.917	0.080	<	0.358	Acceptable	0.080	<	0.358	Acceptable			

 Table 9: Controlling Seismic Drift for Frame 1

Truss Connections [M.A.E. Criteria]:

Each of the nine trusses has twenty-six connections that are required for the selected geometry and all twenty-six connections are made up of three types; pin, heavy brace, and gusset plate. A majority of the connections are made up of pin connections from the braces within the truss as well as the top and bottom chords. The heavy brace connections are located on the three trusses that are part of the lateral system and the gusset plate connections are locate at the top in the middle of each truss. Figure 17 shows the location of each type of connections on the two different styles of trusses (Blue is Pin, Green is Heavy Braced, & Red is Gusset Plate). For this report, the typical pin connection for the tension members and the heavy brace members will be looked at.

Each of the pin connections for the tension members were designed based on the criteria set by AISC. Since there is a significant load within the members, each steel plate is A992. This is to keep the size and the thickness of each plate reasonable. For exterior trusses (Truss 1, 5, 6, & 9), a single bolt pin connections was used for the rods and a two bolt pin connection was used for the interior connections (Figures 18 & 19 show a visual of each plate). The reason for using two pins in the exterior trusses is the load on a single pin makes the diameter significantly large. Therefore using two smaller pins makes the connection look more aesthetically appealing. Dimensions a and b from Figures 18 & 19 are the minimum distance from the edge of the plate to prevent and failure from occurring. One can view the calculations for all the plates for each truss in Appendix H, Calculations 1 through 9 and Table 10 on page 26 summarizes the plates and pins used for Trusses 1 & 2.

Figure 17: Types of Connections

Figure 18: Single Pin Plate Design

Figure 19: Double Pin Plate Design

	Truss 1					Truss 1 Truss 2								
Member	15	16	19	20	Member	15	16	19	20					
w (in)	10	10.5	10.5	10	w (in)	14	14.5	14	14					
t (in)	1.125	1.25	1.25	1.125	t (in)	1.5	1.75	1.5	1.5					
d _{pin} (in)	4	4	4	4	d _{pin} (in)	(2) 3	(2) 3	(2) 3	(2) 3					

Table 10: Dimensions & Pin Sizes for Trusses 1 & 2

Final Report: Signature Expression

April 7, 2009

All pin plates will be connected to the columns web by using two welds along on the perimeter of the plate. Welds were used instead of bolts because the width of the plate should be at a minimum to prevent any trouble with the busses traveling near. Figure 20 on the left shows how the plates are connected to the columns of the trusses with. Each weld was designed by using Table 8-6 from AISC Steel Manual because the loads are coming in at an angle of sixty degrees off the vertical. Since the load is located at the center of the plate (Figure 21), there is no eccentricity from the load therefore the value of a within Table 8-6 is zero. Each plate weld calculation can be found in Appendix H, Calculations 10 through 18 and Table 11 below shows the size of the weld for Trusses 1 and 2.

Figure 20: Weld Symbols for Plates

Figure 21: Location of Load

		Truss 1					Truss 2		
Member	15	16	19	20	Member	15	16	19	20
Weld	Fillet	Fillet	Fillet	Fillet	Weld	Fillet	Fillet	Fillet	Fillet
Electrode	E70XX	E70XX	E70XX	E70XX	Electrode	E70XX	E70XX	E70XX	E70XX
t (in)	7/16	8/16	4/16	4/16	t (in)	9/16	11/16	9/16	7/16

Table 11: Weld Sizes for Trusses 1 & 2

All but two of the welds are fillet welds. Members 16 and 19 in Truss 4 have full penetration welds because the actual size of a fillet weld exceeds 1 inch and it is around the same cost for a fillet weld over 1 inch and a full penetration weld.

Joseph W. Wilcher III Structural Option		Union Station Expansion Washington DC
Adviser: M. K. Parfitt	Final Report: Signature Expression	April 7, 2009

The second type of connection being looked at in this thesis is a heavy brace connection on Truss 1 which acts as part of the lateral system. To prevent any moment from occurring within the connection, the Uniform Force Method was used. Figure 22 shows the location as where the forces for the column and the beam would be located at on the plate. Since there is no beam required, due to the bottom chord at the location is a zero force member, and the connections is being attached to the column web, the only two forces acting are the shear in the column and the pull out force need in a beam. Therefore a WT7x41 was selected to handle to horizontal force from the connection.

Figure 22: Column and Chord Force Distribution in Plate

All limit states for each portion of the connection were taken into detail for the heavy brace connection. On the following page of this thesis is a detailed drawing of what members, bolts, welds, and dimensions are required for brace member 17 for Truss 1. All calculations for this connection can be found in Appendix H, Calculations 19 through 22.

Final Report: Signature Expression

April 7, 2009

Figure 23: Detailed Connection of Heavy Brace Member

Final Report: Signature Expression

Final Members for Trusses:

After taking all the loads from the upper levels, figuring out the forces that act in all the members, performing lateral analysis, designing the connections, Table 12 and 13 shows the final members used for both Trusses 1 and 2. Appendix I, Tables 1 through 9 show all nine members with their final member sizes. As stated previously in this report, refer to the Architecture Breadth to understand why the two trusses were designed as they are.

Table 12: Final Members for Truss 1

Table 13: Final Members for Truss 2

Final Report: Signature Expression

April 7, 2009

Foundation Verification:

Since the soil at the site for the expansion to Union Station is considered weak (Refer to Foundation Section of Existing Structural System), making sure the foundation can withstand the change from post-tension concrete to steel is important. The change of systems works as one can see from Table 14 on the following page. There is one area where there is a problem and that is located at Truss 4. The *b* designed succeeds the allowable area to put a square footer. One possibility to correct this is to have a different system as the foundation. Since the research and development of a new foundation system was not part of this thesis due to the time restriction the author had.

The second check for the foundation done was making sure overturning was not a problem. Table 15 on page 31 shows that overturning moment is not an issue to Union Station. The two checks done on the foundation verify that this new system can work on the site for the expansion to Union Station.

Spot Chec	ks On Foun	dation: Stru	cture 1					
	Grid Line:	Truss 1						
Member 9 11 12								
P (Kips)	591.28	591.28 1210.00		206.93				
# Supporting Piles For Platfroms	4	4	4	4				
Tons Per Pile	73.91	151.25	128.75	25.87				
o (psf)	2000.00	2000.00	2000.00					
Arequired (ft ²)	73.91	151,25	128.75	25.87				
b (ft)	9	13	12	6				
s 18 ft ?	Yes	Yes	Yes	Yes				

Spot Chec	ks On Foun	dation: Stru	cture 1		
	Grid Line: "	Truss 2			
Member	9	11	12	14	
P (Kips)	1160.00	2340.00	2140.00	750.64	
# Supporting Piles For Platfroms	4	4	4	4	
Tons Per Pile	145.00	292.50	267.50	93.83 2000.00	
o (psf)	2000.00	2000.00	2000.00		
Arequired (ft ²)	145.00	292.50	267.50	93.83	
b (ft)	13	18	17	10	
s 18 ft ?	Yes	Yes	Yes	Yes	

Spot Chec	ks On Foun	dation: Stru	cture 1		
	Grid Line: 1	Truss 3			
Member	9	11	12	14	
P (Kips)	1250.00	2460.00	2460.00	1250.00	
# Supporting Piles For Platfroms	4	4	4	4	
Tons Per Pile	156.25	307.50	307.50	156.25	
a (bel)	2000.00	2000.00	2000.00	2000.00	
Arequired (It ²)	156,25	307.50	307.50	156.25	
b (ft)	13	18	18	13	
≤18 ft ?	Yes	Yes	Yes	Yes	

Spot Chec	ks On Foun	dation: Stru	cture 1		
1	Grid Line:	Truss 4			
Member	9	11	12	14	
P (Kips)	1820.00	4370.00	4220.00	1790.00	
# Supporting Piles For Platfroms	4	4	4	4	
Tons Per Pile	227.50	546.25	527.50	223.75	
o (psf)	2000.00	2000.00	2000.00	2000.00	
Arequired (tt ²)	227.50	546.25	527.50	223.75	
b (ft)	16	24	23	15	
≤ 18 ft ?	Yes	No	No	Yes	

	Grid Line: 1	Fruss 6			
Member	9	11	12		
P (Kips)	641.03	1290.00	1290.00	641.0	
# Supporting Piles For Platfroms	4	4	4	4	
Tons Per Pile	80.13	161.25	161,25	80.1	
o (psf)	2000.00	2000.00	2000.00	2000.0	
Arequired (ft ²)	80,13	161.25	161.25	80.1	
b (ft)	9	13	13		
≤ 18 ft ?	Yes	Yes	Yes	Y	

Spot Chec	ks On Foun	dation: Stru	cture 2		
	Grid Line: "	Truss 7			
Member	9	11	12	14	
P (Kips)	1230.00	2420.00	2350.00	1070.00	
# Supporting Piles For Platfroms	4	4	4		
Tons Per Pile	153.75	302.50	293.75	133.75	
o (psf)	2000.00	2000.00	2000.00		
Arequired (R ²)	153.75	302.50	293.75	133.75	
b (ft)	13	18	18	12	
≤ 18 ft ?	Yes	Yes	Yes	Yes	

Spot Chec	ks On Foun	dation: Stru	cture 2		
	Grid Line:	Truss 8			
Member	9	11	12	14	
P (Kips)	1160.00	2340.00	2090.00	650.31	
# Supporting Piles For Platfroms	4	4	4	4	
Tons Per Pile	145.00	292.50	261.25	81.25	
a (bel)	2000.00	2000.00	2000.00	2000.00	
Arequired (R ²)	145.00	292.50	261,25	81.29	
b (ft)	13	18	17	10	
≤ 18 ft ?	Yes	Yes	Yes	Yes	

Spot Chec	ks On Foun	dation: Stru	cture 2				
£	Grid Line:	Truss 9					
Member	9	9 11 12					
P (Kips)	79.82	149,39	149.39	79.82			
# Supporting Piles For Platfroms	4	4	4	4			
Tons Per Pile	9.98	18.67	18.67	9.98			
o (psf)	2000.00	2000.00	2000.00				
Arequired (ft ²)	9.98	18.67	18.67	9.98			
b (ft)	4	5	5	4			
≤18ft?	Yes	Yes	Yes	Yes			

Spot Chec	ks On Foun	dation: Stru	cture 1					
	Grid Line: 1	Truss 5		8				
Member 9 11 12								
P (Kips)	517.32	1040.00	769.39	461.84				
# Supporting Piles For Platfroms	4	4	4	4				
Tons Per Pile	64.67	130.00	96.17	57.73				
o (psf)	2000.00	2000.00	2000.00	2000.00				
Anequired (ft ²)	64.67	130.00	96.17	57.73				
b (ft)	9	12	10	8				
≤18ft?	Yes	Yes	Yes	Yes				

 Table 14: Spot Checks on Foundation

Final Report: Signature Expression

April 7, 2009

	Overturning Verification: Wind									
		Structure	1		Į,	1		Structure	2	
Moment (ft-Kips)	L/2 (ft)	P (Kips)	W/2 (Kips)	Overturning Issues	2	Moment (ft-Kips)	L/2 (ft)	P (Kips)	W/2 (Kips)	Overturning Issues
45170	89.75	503.2869	27106.5	No		45235	83.5	541.7365	23324	No
-			(Overturning Ve	rif	ication: Seis	mic			
	-	Structure	1	5. 2	Ţ	Structure 2				
Moment (ft-Kips)	L/2 (ft)	P (Kips)	W/2 (Kips)	Overturning Issues		Moment (ft-Kips)	L/2 (ft)	P (Kips)	W/2 (Kips)	Overturning Issues
48422	89.75	539.5209	27106.5	No		46603	83.5	558.1198	23324	No

Table 15: Overturning Moment

Structural Depth Conclusion:

Designing a transfer system is no easy task for an engineer, especially when one decides to be creative and integrate the structure and architecture of the building. The hardest challenge was not to determine the loads from the above floor or figuring out the loads in the members or designing a new lateral system, but figuring out if the curved tension members selected could withstand the moment inside the member which wants to pull the member into a compression state. Making sure the foundation system could support the new structural system as well was a challenging task as well. Trying to keep in mind that the soil on the site is weak throughout the whole structural depth was at times hard.

After all the calculations and innovative structural designing, the author believes the thesis criteria goals 1 through 4 (refer to page 10) where accomplished. Switching from a post-tension concrete to a composite steel floor system with transfer trusses can satisfy not only the goals of the design firm, but the author's as well. Each truss shows how creative an engineer can be when working with certain boundaries to follow. The only main concern the author wishes there was more time for was the foundation system. If there was time, the author would try to create a new foundation system that would work around the train tracks and give extra support to the expansion of Union Station.

Final Report: Signature Expression

April 7, 2009

ARCHITECTURAL BREADTH

Architectural Design of King Post Trusses:

To create a signature expression for the expansion of Union Station, the author believed the best way to achieve this was to use the king post trusses that act as the transfer system. In order to make the trusses look appealing to the traveler's eye, a variety of members should be used and the author wanted to make the trusses look like no other truss someone has seen. This is to make the viewer look and ask themselves the questions about the trusses.

In the beginning of the design of the trusses, sketches were drawn up for parts of the trusses. The authors started off with just having one type of truss in the expansion. Having one truss kept the concept simple but intriguing. Shown below are concepts the author originally started off with. One can see from Figure 1 that the original thoughts of the top chord was to have a built up box shape with a WT member as the bottom portion with tension rods connecting into the web of the WT member. Using HSS rectangular members as columns were thought about since it would be different having them act as columns to carry massive loads. Figure 2 shows how the bottom chord could be rotated 90 degrees where the columns rest on the web of bottom chord and the original bracing members were going to be double angles. The original design of the trusses can be found on Figure 1 (Note that the truss is not to scale).

Figure 1: Top Chord & Column Concepts

Figure 2: Bottom Chord & Brace Concepts

Final Report: Signature Expression

While the concepts and style of the truss is different than most trusses, the author felt there wasn't enough "signature" behind it. Going back and rethinking about some of the members to use, only WT members would be used for the top chords (no built up members). This is to give a more simple look to the top chords and no one would really see the built up member portion since the floor to ceiling height is 18'-0" high. Also three of the columns were removed in this design of the trusses because this would give long spans to the trusses which would help with traffic of the busses as well as make the trusses feel as if they were more related to the definition of a king post truss. Figure 3 below shows the second design of the truss for the expansion to Union Station. From here on out within this section, the truss figures are scaled correctly to the 18'-0" high by 189'-0" long.

Figure 3: 2nd Design of Truss

Having long spans, tension rods, and an interesting diagonal bracing in the middle portion of the truss does make this design interesting to view. However, the author realized that problems could arise with the long spans from a structural engineering stand point. One problem is the weight from the floors above could cause a significant deflection which could lead to future problems. Another design was sketched up (Figure 4) and in this design, the three columns removed were placed back. Also the tension rods were inverted and now meet at the bottom of a truss because the author wanted to view the rods at a different perspective. Each tension rod was no longer attached to the web of the WT member at the top and a plate was used instead for the design.

Figure 4: 3rd Design of Truss

Final Report: Signature Expression

Realizing that the tension rods look more appealing when they meet at the bottom of a column, the author finalized this portion of the trusses. When structural calculations were being done on the trusses (Refer to the structural depth portion of this report), there were three zero force members. Since those members serve no purpose, the author removed them from the truss and when that happened, the trusses became more intriguing to look at. Once this took place, the author decided to remove the center column and replace the double angles with a wide flange shape (Refer to Figure 5 below). All of the following changes started to make the truss look as if it were a signature expression for the expansion.

Figure 5: 4th Design of Truss

To finalize this truss, the tension rods were once again connected to the web of the WT members to make the connection seem simplified to the viewers' eye. Figure 6 shows the final design of the truss. Now that this truss was completed, the author realized that this truss would not work on the inside of the expansion since the busses must travel and park in their allowed areas. Therefore a new truss would be created for the interior and the truss already created will be used for the exterior of the building.

Figure 6: Final Exterior Truss Design
Final Report: Signature Expression

April 7, 2009

While thinking about what could be used in the interior truss to allow busses to travel under while making a signature expression, the idea of using curved members that create an arch would came to the author's attention. This gives the feeling of openness to the ground floor as well as drawing one's view to the trusses giving a sense of intrigue. HSS tubes were selected as the members for the curved for not only their strength they can carry but as another different steel member used in the trusses that already have multiple steel shapes within them. Figure 7 below shows the final design for the interior trusses.

Figure 7: Final Interior Truss Design

Final Report: Signature Expression

April 7, 2009

Verification of Vehicular Circulation:

With the trusses placed at their desired locations on the ground floor, making sure the busses can travel and park to unload passengers is of high importance. From Figure 8 on the right, one can see the original circulation path used in the expansion to Union Station and where the trusses are located at. Since Trusses 5 and 6 are the exterior type due to being the ends of the two structures, this causes a problem with the original circulation. Due to the tension rods used as braces within the trusses, the busses will not be able to pass with the clearance height required as well as park under. Therefore the author proposes a change of the circulation on the ground floor and the location of the parking spaces as well.

Figure 8: Existing Vehicular Circulation

Figure 9 on the left indicates the new circulation for the expansion to Union Station. Instead of just having an exit to H-Street in Washington DC, an entrance was created as well which helps reduce the traffic at the main entrance of the entire building. Allowing an entrance in the expansion gives the busses the choice to reduce the trip around the building to their designated parking zone. As for the relocation of the busses that have issues with Trusses 5 & 6, the areas shaded gray in Figure 9 show where how six of the eight bus zones can be moved without causing major problems. At the very bottom right of the expansion, two of the busses were positioned where some of the waiting area is, but since more room was created between the trusses, the author decided to relocate the waiting terminals which are discussed on the following page.

Figure 9: New Vehicular Circulation & Bus Locations

Final Report: Signature Expression

April 7, 2009

Redistribution of Waiting Terminals:

Located next to the MEP Room of the expansion of Union Station (Upper left corner of Figure 8) is where all of the area for the waiting terminal is located. Now that the circulation and location for the busses has changed, the author decided to break up the one area into two parts that are now underneath the king post trusses (refer to Figure 10). This gives the trusses more of a signature expression while the crowd can notice them while they wait and stare at them through the glass walls that make up the new terminals (refer to Figure 11). The new floor plan not only helps with the expression of the trusses, but now draws travelers to want to stay inside the waiting terminals.

Figure 10: New Ground Floor Plan

Final Report: Signature Expression

Architectural Breadth Conclusion:

As stated in the previous page, the new floor plan of the expansion to Union Station optimizes the area while giving the signature expression of the trusses the author wanted to create. Having the waiting terminals under the trusses helps draw the attention to the trusses but also makes one to believe that this building was given a custom idea when in the design phase. If given more time for this thesis, the author would have liked to keep working on the architectural design of the trusses. While they are one of a kind for the building and do give off a signature look, there could have a better concept for the columns. One possibility could have been to have two different members act as the columns and join with a creative connection half way. To view renderings of the trusses and ground floor of the expansion to Union Station, Refer to the Renderings portion of this report located on page 44.

Final Report: Signature Expression

LIGHTING BREADTH

Selection of Luminaries to Highlight Trusses:

Acting as a signature expression for the expansion to Union Station, all the trusses should be illuminated to capture the grand impression each one gives off. Instead of using typical luminaries to highlight the trusses, the decision to use LEDs was determined by the author because not only do LEDs save energy and last for a long period of time, but they also gives off a high-performance illumination and beam quality to emphasis the structure being lit. The author selected the eW Graze Powercore Linear LED strip made by Philips. Typically the Philips eWs are used for exterior lighting to emphasis a façade or structure and since the trusses are part of the structure to Union Station, the LEDs fit the criteria where they are going to be used.

Each four foot section has forty-eight white LEDs inside that will give off five foot candles at a distance of eighteen feet (the height of the trusses). Each one of the trusses will have six of the four foot length LED strips per 31'-6" at the bottom of each one (Refer to Figure 1 to see layout). Note that the LEDs are not scaled to size in the width direction because the author wants the reader to be able to see how they will be spaced. Since the two bottom chords of all the trusses are rotate ninety degrees (resting on the web), the lights within that 31'-6" will be placed within the chord. Having indirect lighting will guide one's eyes from the ground to looking up and noticing the trusses within the expansion. Figure 2 below is a picture of the four foot strip of LEDs and to view the specifications for the lights, refer to Appendix J.

It should be noted to the reader that the LEDs will not be the main lighting system for the bus terminal area. Only will the LEDs serve the purpose of illuminating the trusses and another system shall be used to meet the requirements set forth by the IESNA for lighting the bus terminal.

Figure 1: Typical 31'-6" LED Layout under Trusses

Figure 2: eW Graze Powercore 4' Strip

Final Report: Signature Expression

Illuminance Categories & Required Foot Candles:

Using Chapter 10 of the IESNA book, the required illuminance categories as well as foot candles were determined. Table 1 below shows each area with the requirements set forth by IESNA. The waiting terminals have a required fifty foot candles due to the fact that there will be ticket counters within the areas and according to Figure 2 in Appendix K, a minimum of fifty foot candles is required. All other remaining illuminance category requirements can be found from Figure 2 for the ground floor and Figure 1 in Appendix K shows the required foot candles for each illuminance category.

Ground Floor of Expansion to Union Station					
Area	Watiting Terminal	Watiting Ferminal Restrooms Bus Terminal Elevators		Stairs	
Category	E	В	А	В	В
Foot Candles	50	5	3	5	5

Table 1: Illuminance Categories & Foot Candles

Selection of Luminaries for Waiting Terminals:

Since the waiting terminal has been broken into two areas that are now located within the center of the expansion to Union Station, the author wanted to use different luminaries than the existing ones. The Avante recessed direct/indirect lighting luminarie was selected for each of the waiting terminals. Each luminarie consists of three T8 32 Watt lamps that create indirect light which is then reflected as direct lighting from the cover of the Avante luminarie. This luminarie is suggested using in areas where there is a work space that one has to concentrate on. Because there are ticket counters in the waiting terminals, this type of luminaire works sufficiently. Figure 3 on the right shows the design of the luminaire and the specifications can be found in Appendix L.

Figure 3: Avante 2x4 Luminaire

Final Report: Signature Expression

Lumen Method for Waiting Terminal:

From Chapter 9 of IESNA, the lumen method design approach was used to calculate the number of Avante 2x4 luminaries required for the waiting terminal on the left side of the ground floor plan (refer to Figure 10 on page 36 of the report). The cavity ratios used to determine the required p for the walls, floor, and ceiling were 80/60/30. These are the numbers typically used when designing for a room with its criteria. All light loss factors were determined as well based on the assumption the luminaries used are a category type VI with a clean environment and have a cleaning period of three months. The reason three months is used is staff may not clean the luminaries every week, but it is safe to assume around every three months a cleaning will take place.

After all calculations were done, the amount of luminaries required to light the 35'-0"x35'-0" waiting terminal is 10.55. Since a whole number is required, the author decided to select twelve luminaries as the number for the waiting terminal and this number falls within the ten percent tolerance allowed for the lumen method. Figure 4 below shows the waiting terminal with its relative ceiling grid, which has 2'x2' grids, and the location of the twelve Avante luminaries. One can notice that the author has spaced the luminaries evenly across the entire ceiling plan to evenly distribute the light being generated. To view all calculations, charts, and diagrams for the waiting terminal, refer to Appendix M.

Figure 4: Lighting Layout for Waiting Terminal

Lighting Breadth Conclusion:

Giving the trusses a separate lighting system than the bus terminal creates a greater impact on how they are the signature expression for the expansion to Union Station. Using LEDs helps give more of a direct beam that shots up from the ground and invites one who is one the ground to look up and notice the trusses. Lighting up each truss gives the feeling of comfort to them as well. Instead of having a dark area where you cannot see what is happening, making it possible to see the connections and each member of the trusses make one feel safe when walking, waiting, or riding underneath the trusses.

Creating two separate waiting terminals and putting them under the trusses and giving them new lighting fixtures draws the travelers who are waiting to come to them and take a rest of this feet. Each of the new lightning schemes in the waiting terminals brighten up the center of the ground floor to the expansion of Union Station.

One can argue that the location of the LEDs on the ground could cause problem when the busses need to pass underneath and park. Recognizing this problem, the author suggests using strong plexus glass over the top of the LEDs to prevent them from being damaged by a moving vehicle.

Final Report: Signature Expression

April 7, 2009

CONCLUSION

All three topics discussed in this thesis; structural, architecture, and lighting were centered about the trusses. While other concerns were brought up in the two depths (i.e. moving the waiting terminal to a new location), they impacted on the concept of the trusses as well.

This signature expression does make a significant improvement to the expansion of Union Station and also meet all the criteria goals set forth by the author (Refer to page 10 to review the goals). As stated in the structural depth conclusion, the only concern the author has is with the foundation to the expansion. With more time, the author would have liked to try to redesign the foundation system so it would not be close to its limit.

One topic not mentioned in this thesis is the cost of creating this signature expression through trusses. The mezzanine level through the third floor's cost would not be a concern because those floors are switching from a post-tension floor slab to a composite steel system where the composite system is cheaper (Refer back to Technical Report II done by the author). However, the trusses would need significant time for steel to be erected as well as making sure all the tension members were ready for the loads from the floors above. Also, the welds the author requested for the plates on the columns would raise the cost since an extra set of specialized workers would be needed. The author still believes even though the cost of the expansion could increase and the schedule could take a little longer due to the trusses, the benefit of having this grand expression in the building would not only mean better business for the owner, but would give the occupants and travelers something to talk about while in the expansion to Union Station.

April 7, 2009

APPENDIX A: COMPOSITE STEEL STRUCTURAL FLOOR PLANS

Figure 2: Preliminary Floor Plan for Mezzanine Level

April 7, 2009

APPENDIX B: PRELIMINARY COMPOSITE STEEL CALCULATIONS

Final Report: Signature Expression

April 7, 2009

COMPOSITE STEEL DECK		
Fire Rating (Hours)	2	
Concrete (Type)	Lightweight	
Concrete Unit Weight (pcf)	107 - 116	
Concrete Thickness (in)	4.25	
Loading Used (psf)	100	
Superimposed Load (psf)	15	
Total Load (psf)	115	
Deck Thickness (in)	2	
Total Floor Thickness (in)	6.25	
Weight of Slab (psf)	51	
Deck Type 2VLI16		

Figure 1: Composite Steel Deck Calculations

evel	Roof	1	Load Informat	tion
Member (Grid Location)	49' Int.	1	Member Size	W21x55
Slab Thickness (in)	5.25	1	φM _n (ft-Kip) [Table 3-2]	473
e (psi)	3000		W _{conc+deck} (psf)	42
ength (ft)	49	1	W _{beam} (Kip/ft)	0.055
ributary Area (ft)	7.875	1	W _{construction live} (psf)	20
Dead Load (psf)	0	×	w _{DL} (Kip/ft)	0.386
Super Imposed Load (psf)	15		w _{LL} (Kip/ft)	0.158
ive Load (psf)	50		w _u (Kip/ft)	0.71
v _u (psf)	108		M _u (ft-Kip)	215
M _u (ft-Kip)	254		$\phi M_n \ge M_u$	Okay
		•		
assumption (in)	1.75		Deflection During Co	Instruction
(2 (in)	3.5		L/360	1.633
Vide Flange Shape (Table 3-19)	W21x55	1	w _{pL} (Kip/ft)	0.386
oM _n (ft-Kip)	642		Irequired (in ⁴)	1056
$M_n \ge M_u$	Okay	1	Imember (in ⁴)	1140
Plastic Netural Axis Location	7		Imember > Irequired	Okay
	5×C			594
Q _n (Kip) [Table 3-19]	203	1	Live Load Defle	ction
Qn (Kip/Studs) [Table 3-21]	17.1		w _{LL} (Kip/ft)	0.158
off (in) c	47.25	Controls	ILB (in ⁴) [Table 3-20]	1770
en (m) s	147	1	∆ (in)	0.398
(in)	1.685		∆ < L/360	Okay
< a _{assumption}	Conservative			
Shear Studs	11.87	12.0	Total Deflect	on
otal # Shear Studs	24.0		L/240	2.45
			w _u (Kip/ft)	0.71
			Δ (in)	1.99
			∆ < L/240	Okay
				MOA.EE
			Member	VV/1800

Calculation 1: Preliminary Roof Composite Steel Beams

Final Report: Signature Expression

April 7, 2009

Level	3rd Floor	
Member (Grid Location)	49' Int.	
Slab Thickness (in)	5.25	
f _c (psi)	3000	
Length (ft)	49	
Tributary Area (ft)	7.875	
Dead Load (psf)	0	
Super Imposed Load (psf)	15	
Live Load (psf)	50	1
w _u (psf)	108	
M _u (ft-Kip)	254	
a _{assumption} (in)	1.75	
Y ₂ (in)	3.5	
Wide Flange Shape (Table 3-19)	W21x55	
φM _n (ft-Kip)	642	
$\phi M_n \ge M_u$	Okay	
Plastic Netural Axis Location	7	
20. (Kin) [Table 3-19]	203	
Q. (Kip/Studs) [Table 3-21]	17.1	
of (represent) [represent]	47.25	Controls
beff (in) ≤	147	CONTROLS
a (in)	1 685	
a < a	Conservative	
# Shear Studs	11.87	12.0
Total # Shear Stude	24.0	12.0

Member Size	W21x55
pMn (ft-Kip) [Table 3-2]	473
Wconc+deck (psf)	42
w _{beam} (Kip/ft)	0.055
Wconstruction live (psf)	20
w _{pL} (Kip/ft)	0.386
w _{LL} (Kip/ft)	0.158
w _u (Kip/ft)	0.71
M _u (ft-Kip)	215
$pM_n \ge M_u$	Okay
required (in ⁴) member (in ⁴)	1056 1140
	() Calv
member 'required	Chuy
Live Load Defi	ection
Live Load Defl	ection 0.158
Live Load Defi W _{LL} (Kip/ft) L _B (in ⁴) [Table 3-20]	ection 0.158 1770
Live Load Defi w _{LL} (Kip/ft) L _B (in ⁴) [Table 3-20] Δ (in)	ection 0.158 1770 0.398

Total De	eflection
J240	2.45
v _u (Kip/ft)	0.71
1 (in)	1.99
∆ < L/240	Okay
Vember	W21x55
Shear Studs	24.0

Calculation 2: Preliminary 3rd Floor Composite Beams

Level	2nd Level	
Member (Grid Location)	49' Int.	
Slab Thickness (in)	5.25	
f _c (psi)	3000	
Length (ft)	49	
Tributary Area (ft)	7.875	
Dead Load (psf)	0	
Super Imposed Load (psf)	15	
Live Load (psf)	60	
w _u (psf)	124	
M _u (ft-Kip)	292	
a _{assumption} (in)	1.75	

Y ₂ (in)	3.5
Wide Flange Shape (Table 3-19)	W21x55
φM _n (ft-Kip)	642
$\phi M_n \ge M_u$	Okay
Plastic Netural Axis Location	7

ΣQ _n (Kip) [Table 3-19]	203	
Qn (Kip/Studs) [Table 3-21]	17.1	
and the second	47.25	Controls
ben (m) s	147	
a (in)	1.685	
a < a _{assumption}	Conservative	
# Shear Studs	11.87	12.0
Total # Shear Studs	24.0	

Load Information		
Member Size	W21x55	
φM _n (ft-Kip) [Table 3-2]	473	
W _{conc+deck} (psf)	42	
w _{beam} (Kip/ft)	0.055	
W _{construction live} (psf)	20	
w _{DL} (Kip/ft)	0.386	
w _{LL} (Kip/ft)	0.158	
w _u (Kip/ft)	0.71	
M _u (ft-Kip)	215	
$\phi M_n \ge M_u$	Okay	

Deflection During	Construction
L/360	1.633
w _{DL} (Kip/ft)	0.386
I _{required} (in ⁴)	1056
I _{member} (in ⁴)	1140
Imember > Irequired	Okay

Live Load Deflection		
w _{LL} (Kip/ft)	0.158	
I _{LB} (in ⁴) [Table 3-20]	1770	
Δ (in)	0.398	
∆ < L/360	Okay	

Total De	flection
L/240	2.45
w _u (Kip/ft)	0.71
Δ (in)	1.99
∆ < L/240	Okay
Member	W21x55
Shear Studs	24.0

Final Report: Signature Expression

April 7, 2009

Level	1st Level	
Member (Grid Location)	27.5' Ext.	
Slab Thickness (in)	5.25	
f _c (psi)	3000	
Length (ft)	27.5	
Tributary Area (ft)	3.9375	
Dead Load (psf)	0	1
Super Imposed Load (psf)	15	
Live Load (psf)	50	
w _u (psf)	108	
M _u (ft-Kip)	40	
		•1
a _{assumption} (in)	1.25	
Y ₂ (in)	4	
Wide Flange Shape (Table 3-19)	W12x16	
φM _n (ft-Kip)	113	
φM _n ≥ M _u	Okay	1
Plastic Netural Axis Location	7	
ΣQ. (Kin) [Table 3-19]	58.9	
O. (Kip/Studs) ITable 3-211	17.1	1
	23.625	Controls
beff (in) ≤	92.5	CONTROLS
a (in)	0.978	
a < annumation	Conservative	
# Shear Studs	3.44	40
Total # Shear Studs	80	10
	0.0	

Member Size	W12x16
φM _n (ft-Kip) [Table 3-2]	75.4
W _{conc+deck} (psf)	42
w _{beam} (Kip/ft)	0.016
W _{construction live} (psf)	20
w _{DL} (Kip/ft)	0,181
w _{LL} (Kip/ft)	0.079
w _u (Kip/ft)	0.34
M _u (ft-Kip)	32
φM _n ≥ M _u	Okay

Deflection During Construction	
L/360	0.917
w _{DL} (Kip/ft)	0.181
Irequired (in ⁴)	88
I _{member} (in ⁴)	103
Imember > Irequired	Okay

Live Load Deflection		
w _{LL} (Kip/ft)	0.079	
ILB (in ⁴) [Table 3-20]	197	
Δ (in)	0.177	
∆ < L/360	Okay	

Total Deflection	
L/240	1.375
w _u (Kip/ft)	0.34
∆ (in)	0.85
∆ < L/240	Okay
Member	W12x16
Shear Studs	8.0

Calculation 4: Preliminary 1st Floor Composite Beams

Level	Mezzanine
Member (Grid Location)	20' Ext.
Slab Thickness (in)	5.25
f _c (psi)	3000
Length (ft)	20
Tributary Area (ft)	3.9375
Dead Load (psf)	0
Super Imposed Load (psf)	15
Live Load (psf)	60
w _u (psf)	124
M _u (ft-Kip)	24
a _{assumption} (in)	1.25

Y ₂ (in)	4
Wide Flange Shape (Table 3-19)	W12x16
φM _n (ft-Kip)	113
φM _n ≥ M _u	Okay
Plastic Netural Axis Location	7

EQ _n (Kip) [Table 3-19]	58.9	
Qn (Kip/Studs) [Table 3-21]	17.1	
peff (in) ≤	23.625	Controls
	60	1
a (in)	0.978	
a < a _{assumption}	Conservative	
# Shear Studs	3.44	4.0
Total # Shear Studs	8.0	5433.
		521

Load Information	
Member Size	W12x16
φM _n (ft-Kip) [Table 3-2]	75.4
W _{conc+deck} (psf)	42
w _{beam} (Kip/ft)	0.016
W _{construction live} (psf)	20
w _{pL} (Kip/ft)	0.181
w _{LL} (Kip/ft)	0.079
w _u (Kip/ft)	0.34
M _u (ft-Kip)	17
φM _n ≥ M _u	Okay

Deflection During	Construction
/360	0.667
V _{DL} (Kip/ft)	0.181
required (in ⁴)	34
member (in ⁴)	103
member > I _{required}	Okay

Live Load Deflection		
w _{LL} (Kip/ft)	0.079	
ILB (in ⁴) [Table 3-20]	197	
Δ (in)	0.050	
∆ < L/360	Okay	

Total De	eflection
L/240	1
w _u (Kip/ft)	0.34
∆ (in)	0.24
∆ < L/240	Okay
Member	10/10/16
Shoor Stude	VV12X10

Final Report: Signature Expression

April 7, 2009

W24694	963	42	0094	20	2.152	0860	4.15	515	Okay	Construction	1050	2.152	1566	2700	Okay	and anothers	0880	4060	0184	Cksy	lection	1575	4.15	0.86	Okay	3	A REAL PROPERTY AND
000	Gp] [Teble 3-2]	k (pst)	(tudi	mine [DSf]	(W	ŧ	5	[d		flection During Co		(1)	(j)	0	¹ equired	that and Post	10	Table 3-20]		0	Total Defect		~		0		

Calculation 6: Preliminary Roof Composite Girders

Final Report: Signature Expression

April 7, 2009

Calculation 7: Preliminary 3rd Floor Composite Girders

Final Report: Signature Expression

April 7, 2009

Calculation 8: Preliminary 2nd Floor Composite Girders

Final Report: Signature Expression

April 7, 2009

Calculation 9: Preliminary 1st Floor Composite Girders

Final Report: Signature Expression

April 7, 2009

V/24k94	953	42	0.094	8	2,152	0.990	4.15	515	Okay	nstruction	1.050	2.152	1566	2700	Okay	cion	0.580	7080	0.184	Okay	10	1.576	4.15	0.86	Okey	W24k94	0.07
Vember Size	pM, (fr-Kp) [Table 3-2]	Meane-deck (DST)	Monan (Kip/II)	Meantuction Inter (FSI)	Mou (Kip/It)	Mut. (Kip/R)	Nu (Kp/f)	Nu (fit-Hip)	pM _n ≥ M _s	Defection During Co		Vol. (Kip/t)	recurse (Inf.)	number [iff ⁴]	member > hegated	Live Load Delle	VLL (Kip/ft)	us (in [*]) [Table 3-20]	5 (in)	∆ < L/360	Total Deflecti	.240	Vu (Kpft)	2 (in)	5 < U240	Vember	thear Stude

Calculation 10: Preliminary Mezzanine Composite Girders

April 7, 2009

APPENDIX C: LOADS WITHIN TRUSS 2 MEMBERS

Final Report: Signature Expression

April 7, 2009

Calculations 1 through 4: Forces in Truss 2 Members

Final Report: Signature Expression

April 7, 2009

Calculations 5 through 9: Forces in Truss 2 Members

Calculations 10 through 13: Forces in Truss 2 Members

April 7, 2009

		JI WW.	. wwite	ner II						1		
	ftware license	ed to PSUAE					Part					
e							Ref					
							Ву		Date09-Feb	-09	Chd	
							File Lo	ads.std	0	ate/Time	10-Feb-2	1009
Job I	nform	nation										
	E	ngineer		Checked		Approve	ed					
Name: Date:	00	-Feb-00										
Date.	Ue											
Structu	re Type	TR	USS									
Number	of Nodes		13 Hig	nest Node		14						
Number	of Elemer	nts	21 High	nest Beam		24						
Number	of Basic L	oad Case	S I Course	1								
Number	of Combir	nation Loa	d Cases	0								
ncluded i	in this prin	tout are da	ata for:									
All	The	e Whole S	tructure									
noludod i	in this aris	tout are re	sults for la	ad carer:								
Tvr	n misprin be	L/C	suits for 10	au cases:	Name		_					
1 Y	~	270			Hame							
Prim	any	4	1.0/	D			_					
			2.07	-								
Reac	tione											
voac.												
		Г	orizontal	Vertical	Horizontal	1	Moment		٦			
Node		C F	lorizontal FX	Vertical FY	Horizontal FZ	MX	Moment MY	MZ	7			
Node		C F	lorizontal FX (kip)	Vertical FY (kip)	Horizontal FZ (kip)	MX (kipîn)	Moment MY (kip*in)	MZ (kip`in)]			
Node 1	L/I 1:LOAD	C	lorizontal FX (kip) 0.000	Vertical FY (kip) 1.16E 3	Horizontal FZ (kip) 0.000	I MX (kip*in) 0.000	Moment MY (kip'in) 0.000	MZ (kip*in) 0.000				
Node 1 3	L/I 1:LOAD 1:LOAD	C	lorizontal FX (kip) 0.000 757.940	Vertical FY (kip) 1.16E 3 2.34E 3	Horizontal FZ (kip) 0.000 0.000	MX (kip'in) 0.000 0.000	Moment MY (kip'in) 0.000 0.000	MZ (kip*in) 0.000				
Node 1 3 5	1:LOAD 1:LOAD 1:LOAD	C	lorizontal FX (kip) 0.000 757.940 -757.940	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3	Horizontal FZ (kip) 0.000 0.000 0.000	MX (kip*in) 0.000 0.000 0.000	Moment MY (kip*in) 0 0.000 0 0.000 0 0.000	MZ ((kip`in) 0.000 0.000 0.000				
Node 1 3 5 7	1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD	C	lorizontal FX (kip) 0.000 757.940 -757.940 0.000	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641	Horizontal FZ (kip) 0.000 0.000 0.000 0.000	MX (kip*in) 0.000 0.000 0.000 0.000	Moment MY (kip'in) 0 0.000 0 0.000 0 0.000 0 0.000	MZ (kip*in) 0.000 0.000 0.000				
Node 1 3 5 7	1:LOAD 1:LOAD 1:LOAD 1:LOAD	C	lorizontal FX (kip) 0.000 757.940 -757.940 0.000	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641	Horizontal FZ (kip) 0.000 0.000 0.000 0.000	MX (kip'in) 0.000 0.000 0.000 0.000	Moment MY (kip'in) 0 0.000 0 0.000 0 0.000	MZ (kip'in) 0.000 0.000 0.000				
Node 1 3 5 7	1:LOAD 1:LOAD 1:LOAD 1:LOAD	C	lorizontal FX (kip) 0.000 757.940 -757.940 0.000	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641	Horizontal FZ (kip) 0.000 0.000 0.000 0.000	MX (kip'in) 0.000 0.000 0.000 0.000	Moment MY (kip'in) 0 0.000 0 0.000 0 0.000	MZ (kip'in) 0.000 0.000 0.000				
Node 1 3 5 7 Bean	1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD	Forc	es	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641	Horizontal FZ (kip) 0.000 0.000 0.000 0.000	MX (kip'in) 0.000 0.000 0.000 0.000	Moment MY (kiprin) 0 0.000 0 0.000 0 0.000	MZ (kip'in) 0.000 0.000 0.000				
Node 1 3 5 7 Beam	1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD	Forc	lorizontal FX (kip) 0.000 757.940 -757.940 0.000 es es	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641	Horizontal FZ (kip) 0.000 0.000 0.000	MX (kipin) 0.000 0.000 0.000 0.000	Moment MY (kip'in) 0.000 0.000 0.000 0.000	MZ (kip'in) 0.000 0.000 0.000				
Node 1 3 5 7 Bean	1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD	Forc	lorizontal FX (kip) 0.000 757.940 -757.940 0.000 es on of the jo	Vertical FY (kip) 1.18E 3 2.34E 3 2.14E 3 750.641 <i>int on the be</i>	Horizontal FZ (kip) 0.000 0.000 0.000 0.000	MX (kip'in) 0.000 0.000 0.000 0.000	Moment MY (kiprin) 0 0.000 0 0.000 0 0.000 0 0.000	MZ ([kip*in] 0.000 0.000 0.000 0.000	ing			
Node 1 3 5 7 Beam Nign conv Beam	1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD	Forc	lorizontal FX (kip) 0.000 757.940 -757.940 0.000 es con of the io C	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641 int on the be Axial Fx	Horizontal FZ (kip) 0.000 0.000 0.000 0.000 0.000	MX (kip'in) 0.000 0.000 0.000 0.000	Moment MY (kip'in) 0.000 0.000 0.000 0.000 0.000 0.000 Mx	MZ (kip'in) 0.000 0.000 0.000 0.000 Bend	ing Mz			
Node 1 3 5 7 Beam Beam	1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD	Forc	lorizontal FX (kip) 0.000 757.940 -757.940 0.000 es con of the jo	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641 int on the be Axial Fx (kip)	Horizontal FZ (kip) 0.000 0.000 0.000 0.000 0.000	MX (kiprin) 0.000 0.000 0.000 0.000 0.000	Moment MY (kip'in) 0.000 0.000 0.000 0.000 0.000 0.000 Mx (kip'in)	MZ (kip'in) 0.000 0.000 0.000 0.000 Bend My (kip'in)	ing Mz (kip'in)			
Node 1 3 5 7 Beam Beam	1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD	Forc	lorizontal FX (kip) 0.000 757.940 0.000 0.000 es con of the jo	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641 int on the be Axial Fx (kip) (kip) 2.34E 3 750.641	Horizontal FZ (kip) 0.000 0.000 0.000 0.000 0.000 sam. Shea Fy (kip) 0.000	MX (kip'in) 0.000 0.000 0.000 0.000 ar Fz (kip) 0.000	Moment MY (kip'in) 0 0.000 0 0.000 0 0.000 0 0.000 Mx (kip'in) 0.000 0.000	MZ (kip'in) 0.000 0.000 0.000 0.000 Bend My (kip'in) 0.000	ing Mz (kipʻin) 0.000			
Node 1 3 5 7 Beam Beam 1	1:LOAD 1:LOAD	Forc	lorizontal FX (kip) 0.000 757.940 0.000 0.000 es con of the jo	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641 int on the be Axial Fx (kip) 257.135 267.135	Horizontal FZ (kip) 0.000 0.000 0.000 0.000 sam. Shea Fy (kip) 0.000 0.000	MX (kip'in) 0.000 0.000 0.000 0.000 ar Fz (kip) 0.000 0.000	Moment MY (kip'in) 0 0.000 0 0.000 0 0.000 0 0.000 Mx (kip'in) 0.000 0.000	MZ (kip'in) 0.000 0.000 0.000 0.000 My (kip'in) 0.000 0.000	ing Mz (kip'in) 0.000 0.000			
Node 1 3 5 7 Beam Beam 1 4	1:LOAD 1:LOAD	Forc	lorizontal FX (kip) 0.000 757.940 0.000 0.000 es C	Vertical FY (kip) 1.16E 3 2.34E 3 750.641 int on the be Axial Fx (kip) 267.135 257.135 195.840	Horizontal FZ (kip) 0.000 0.000 0.000 0.000 sam. Shea Fy (kip) 0.000 0.000 0.000	MX (kip'in) 0.000 0.000 0.000 0.000 ar Fz (kip) 0.000 0.000 0.000	Moment MY (kip'in) 0 0.000 0 0.000 0 0.000 Mx (kip'in) 0.000 0.000 0 0.000	MZ (kip'in) 0.000 0.000 0.000 0.000 My (kip'in) 0.000 0.000 0.000	ing Mz (kip'in) 0.000 0.000			
Node 1 3 5 7 Beam Beam 1 4	1:LOAD 1:LOAD	Force	lorizontal FX (kip) 0.000 757.940 0.000 es on of the jo	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641 int on the be Axial Fx (kip) 257.135 257.135 195.840 195.840	Horizontal FZ (kip) 0.000 0.000 0.000 0.000 sam. Shea Fy (kip) 0.000 0.000 0.000 0.000	MX (kip'in) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Moment MY (kip'in) 0 0.000 0 0.000 0 0.000 0 0.000 Mx (kip'in) 0.000 0.000 0.000 0.000	MZ (kip'in) 0.000 0.000 0.000 0.000 My (kip'in) 0.000 0.000 0.000	ing Mz (kip'in) 0.000 0.000 0.000			
Node 1 3 5 7 Beam 1 4 5	1:LOAD 1:LOAD	Forc	es C	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641 int on the be Axial Fx (kip) 257.135 257.135 195.840 195.840	Horizontal FZ (kip) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Ar Fz (kip) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Moment MY (kip'in) 0 0.000 0 0.000 0 0.000 0 0.000 Mx (kip'in) 0.000 0.000 0.000 0.000 0.000	MZ (kip'in) 0.000 0.000 0.000 0.000 My (kip'in) 0.000 0.000 0.000 0.000	ing Mz (kip'in) 0.000 0.000 0.000 0.000			
Node 1 3 5 7 Beam lign conv Beam 1 4 5	1:LOAD 1:	Forc	lorizontal FX (kip) 0.000 757.940 0.000 ess con of the jo C	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641 int on the be Axial Fx (kip) 257.135 257.135 257.135 195.840 195.840 855.860 855.860	Horizontal FZ (kip) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	ar Fz (kip) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Moment MY (kip'in) 0 0.000 0 0.000 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000	MZ (kip'in) 0.000 0.000 0.000 0.000 My (kip'in) 0.000 0.000 0.000 0.000 0.000	ing Mz (kip'in) 0.000 0.000 0.000 0.000 0.000			
Node 1 3 5 7 Beam lign conv Beam 1 4 5	1:LOAD 1:	Force	lorizontal FX (kip) 0.000 757.940 0.000 ess on of the jo C	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641 int on the be Axial Fx (kip) 257.135 257.135 195.840 195.840 855.860 855.860	Horizontal FZ (kip) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Ar Kip'in) 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000	Moment MY (kip'in) 0 0.000 0 0.000 0 0.000 0 0.000 0 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	MZ (kip'in) 0.000 0.000 0.000 0.000 My (kip'in) 0.000 0.000 0.000 0.000 0.000 0.000	ing Mz (kip'in) 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
Node 1 3 5 7 Beam lign conv Beam 1 4 5 6	Liand 1:LOAD	Force	lorizontal FX (kip) 0.000 757.940 0.000 ess con of the io	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641 int on the be Axial Fx (kip) 257.135 257.135 195.840 195.840 855.860 855.860 855.860	Horizontal FZ (kip) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Ar Fz (kip'in) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000000	Moment MY (kip'in) 0 0.000 0 0.000 0 0.000 0 0.000 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000000	MZ (kip'in) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	ing Mz (kip'in) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
Node 1 3 5 7 Beam 1 4 5 6 -	LIG 1:LOAD 1	Force	lorizontal FX (kip) 0.000 757.940 0.000 ess con of the jo C	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641 int on the be Axial Fx (kip) 257.135 257.135 195.840 195.840 855.860 855.860 855.860	Horizontal FZ (kip) 0.000	Ar Fz (kip) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000	Moment MY (kip'in) 0 0.000 0 0.000 0 0.000 0 0.000 0 0.0000 0.00000 0.0000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.	MZ (kip'in) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	ing Mz (kip'in) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
Node 1 3 5 7 Beam 1 4 5 6 7	Licoad 1:LOAD	Force	lorizontal FX (kip) 0.000 757.940 0.000 es con of the io C	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641 int on the be Axial Fx (kip) 257.135 257.135 257.135 195.840 855.860 855.860 855.860 855.860	Horizontal FZ (kip) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	ar Fz (kip) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Moment MY (kip'in) 0 0.000 0 0.000 0 0.000 0 0.000 0 0.0000 0.00000 0.0000000 0.000000 0.00000 0.00000 0.000000 0	MZ (kip'in) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	ing Mz (kip'in) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
Node 1 3 5 7 Beam Nign conv Beam 1 4 5 6 7	Licoad 1:LOAD	Forc	lorizontal FX (kip) 0.000 757.940 0.000 es con of the io	Vertical FY (kip) 1.16E 3 2.34E 3 2.14E 3 750.641 int on the be Axial Fx (kip) 257.135 257.135 195.840 195.840 855.860 855.860 855.860 257.135 257.135	Horizontal FZ (kip) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	ar Fz (kip) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000000	Moment MY (kip'in) 0 0.000 0 0.000 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	MZ (kip'in) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	ing Mz (kip'in) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			

Final Report: Signature Expression

April 7, 2009

Joseph W. Wilcher III	Job No	Sheet No 2	Rev
Software licensed to PSUAE	Part		
Job Title	Ref		
	B/	Date09-Feb-09 Chd	
Client	^{Fle} Loads.std	Date/Time 10-F	eb-2009 18:36

Beam End Forces Cont ...

			Axial	Sh	ear	Torsion	Bend	ding
Beam	Node	L/C	Fx	Fy	Fz	Mx	My	Иz
			(kip)	(kip)	(kip)	(kip`in)	(kip [*] n)	(kip`in)
8	11	1.LOAD	-195.840	0.000	0.000	0.000	0.000	0.000
	12	1:LOAD	195.840	0.000	0.000	0.000	0.000	0.000
9	12	1:LOAD	632.906	0.000	0.000	0.000	0.000	0.000
	13	1.LOAD	-032.900	0.000	0.000	0.000	0.000	0.000
10	13	1:LOAD	632.906	0.000	0.000	0.000	0.000	0.000
	14	1:LOAD	-632.906	0.000	0.000	0.000	0.000	0.000
11	1	1:LOAD	1.16E 3	0.000	0.000	0.000	0.000	0.000
	8	1:LOAD	-1.16E 3	0.000	0.000	0.000	0.000	0.000
12	2	1:LOAD	1.13E 3	0.000	0.000	0.000	0.000	0.000
	0	1:LOAD	-1.13E 3	0.000	0.000	0.000	0.000	0.000
13	3	1:LOAD	1.76E 3	0.000	0.000	0.000	0.000	0.000
	10	1:LOAD	-1.76E 3	0.000	0.000	0.000	0.000	0.000
15	5	1:LOAD	1.6E 3	0.000	0.000	0.000	0.000	0.000
	12	1:LOAD	-1.6E 3	0.000	0.000	0.000	0.000	0.000
16	6	1:LOAD	835.230	0.000	0.000	0.000	0.000	0.000
	13	1:LOAD	-835.230	0.000	0.000	0.000	0.000	0.000
17	7	1:LOAD	750.641	0.000	0.000	0.000	0.000	0.000
	14	1:LOAD	-750.641	0.000	0.000	0.000	0.000	0.000
18	8	1:LOAD	-985.738	0.000	0.000	0.000	0.000	0.000
	2	1:LOAD	985.738	0.000	0.000	0.000	0.000	0.000
19	2	1:LOAD	-1.28E 3	0.000	0.000	0.000	0.000	0.000
	10	1:LOAD	1.28E 3	0.000	0.000	0.000	0.000	0.000
20	3	1:LOAD	1.17E 3	0.000	0.000	0.000	0.000	0.000
	11	1:LOAD	-1.17E 3	0.000	0.000	0.000	0.000	0.000
21	11	1:LOAD	1.1E 3	0.000	0.000	0.000	0.000	0.000
	5	1:LOAD	-1.1E 3	0.000	0.000	0.000	0.000	0.000
22	12	1:LOAD	-954.509	0.000	0.000	0.000	0.000	0.000
	6	1:LOAD	954.509	0.000	0.000	0.000	0.000	0.000
23	6	1:LOAD	-728.951	0.000	0.000	0.000	0.000	0.000
	14	1:LOAD	728.951	0.000	0.000	0.000	0.000	0.000
24	3	1:LOAD	0.000	0.000	0.000	0.000	0.000	0.000
	5	11 OAD	0 000	0.000	0.000	0.000	0.000	0.000

Print Time/Date: 10/02/2009 18:37

STAAD.Pro for Windows Release 2006

Print Run 2 of 25

STAAD Output

April 7, 2009

APPENDIX D: PRELIMINARY TRUSS 2 MEMBER SIZES

Final Report: Signature Expression

Member	11		Member	12		Member	13	
P _u (Kips)	1160	Compression	P, (Kips)	1125.06	Compression	P. (Kips)	1769.81	Compression
Length (ft)	18		Length (†t)	40		Length (ft)	18	
Trial Member	W14x176		Trial Member	W14x176		Trial Member	W14x176	
Table 1-1 From Ste	el Manual		Table 1-1 From	Steel Manual		Table 1-1 From	I Steel Manual	
A ₉ (in ²)	51.8		A ₂ (in ²)	51.8		A _s (in ²)	51.8	
r _z (in)	6.43		r _x (in)	6.43		r _x (in)	6.43	
r _y (in)	4.55		r _y (in)	4.55		r _y (in)	4.55	
Theoretical K [Table C-C2.2]	0.5		Theoretical K [Table C-C2.2]	0.5		Theoretical K [Table C-C2.2]	0.5	
KL/rx	16.8		KLIN	16.8		KLIr	16.8	
KL/ry	23.7	Controls	KLJry	23.7	Controls	KL/r,	23.7	Controls
E (ksi)	29000		E (ksi)	29000		E (ksi)	29000	
F _y (ksi)	00		F _y (ksi)	50		F _y (ksi)	50	
4.71* (E/Fy) ^{1/2}	113		4.71* (EJF,) ^{1/2}	113		4.71* (E/F) ^{1/2}	113	
Use For = 0.6584(F	Fy/Fe)*Fy		Use Fcr = 0.65(8^(Fy/Fe)*Fy		Use For = 0.65	58^(Fy/Fe)*Fy	
F _e (ksi)	507		F _e (ksi)	507		F _e (ksi)	507	
F _{cr} (ksi)	48		F _{cr} (ksi)	48		F _{cr} (ksi)	48	
P _n (Kips)	2485		P, (Kips)	2485		Pr (Kips)	2485	
φP _n (Kips)	2237		φP _a (Kips)	2237		φP _n (Kips)	2237	
Table 4-1 From Ste	el Manual		Table 4-1 From	Steel Manual		Table 4-1 From	n Steel Manual	
(KL), (ft)	18		(KL), (ft)	18		$(KL)_{V}(\hat{R})$	18	
r _z /r _y	1.6		r _x /r _y	1.6		r _x /r _y	1.5	
φP _n (Kips)	1890		φP _a (Kips)	1850.0		φP _n (Kips)	1890.0	
(KL)er (ft)	11.3	Okay	(KL) err (ft)	11.3	Okay	(KL) _{or} (ft)	11.3	Okay
φP _n ≥ P _n	Okey		φP _a ≥ P _c	Okay		φPn≥Pu	Okay	
1 · · ·	1000							

Page 64 of 131

COLUMNS								
Member	15		Member	16		Member	17	
P _u (Kips)	1598.63	Compression	P. (Kips)	835.23	Compression	P. (Kips)	750.54	Compression
Length (ft)	18		Length (ft)	18		Length (ft)	18	
Trial Member V	V14x176		Trial Member	VV14x176		Trial Member	W14x176	
Table 1-1 From Stee	Manual		Table 1-1 From S	teel Manual		Table 1-1 From \$	Steel Manual	
A ₉ (in ²)	51.8		A ₉ (in ²)	51.8		A ₉ (in ²)	51.8	
r _s (in)	6.43		r _x (in)	6.43		r _x (ir)	6.43	
r, (in)	4.55		r _y (in)	4.55		r _y (ir)	4.55	
Theoretical K [Table C-C2 2]	0.5		Theoretical K [Table C-C2.2]	0.5		Theoretical K [Table C-C2.2]	0.5	
KL/rx	16.8		KL/I _x	16.8		KL/rz	16.8	
KL/I _y	23.7	Controls	KL/ry	23.7	Controls	KL/r,	23.7	Controls
E (ksi)	29000		E (ksi)	29000		E (ksi)	29000	
F _y (ksi)	50		F _y (ksi)	50		F _y (ksi)	50	
∠.71× (E/F _y) ^{1/2}	113		4.71* (E/F _y) ^{1/2}	113		4.71* (E/Fy) ^{1/2}	113	
Use For = 0.6584(F)	//Fe)*Fy		Use Fcr = 0.658/	(F//Fe)*Fy		Use Fcr = 0.658	3^(Fy/Fe)*Fy	
F _e (ksi)	507		F _b (ksi)	507		F ₆ (ksi)	507	
F _{cr} (ksi)	48		F _{tr} (ksi)	48		F _{er} (ksi)	48	
P _n (Kips)	2485		P _n (Kips)	2485		P, (Kips)	2485	
φP, (Kips)	2237		φP _n (Kips)	2237		φP _n (Kips)	2237	
Table 4-1 From Stee	Manual		Table 4-1 From S	teel Manual		Table 4-1 From 5	Steel Manual	
(KL), (ft)	18		(KL) _y (ft)	18		(KL) _V (ft)	18	
r _z /r _y	1.6		r _x /r _y	1.6		r _x ir _y	1.6	
φP _r (Kips)	1890		φP _n (Kips)	1890		φP _n (Kips)	1890	
(<l)err (ft)<="" td=""><td>11.3</td><td>Okay</td><td>(KL)err (ft)</td><td>11.3</td><td>Clkay</td><td>(KL)_{inf} (ft)</td><td>11.3</td><td>Okay</td></l)err>	11.3	Okay	(KL)err (ft)	11.3	Clkay	(KL) _{inf} (ft)	11.3	Okay
φP,≥P.	Okay		φP, ≥ P.	Okay		φPn≥Pu	Okay	
Member V	V14x176		Member	W14x176		Member	W14x176	

Calculation 2: Preliminary Column Sizes for Truss 2 Cont'd

Adviser: M. K. Parfitt

Joseph W. Wilcher III

Final Report: Signature Expression

April 7, 2009

April 7, 2009

BOTTOMCHORI	SC					
Mamber	÷		Member	P		
P., (Kips)	253.38	Tension	P. (Kips)	196.32	Tension	
Lenath (ft)	31.5		Lenath (ft)	31.5		
0	0.0		Ð	0.0		
F _y (ksi)	50		F _y (ksi)	50		
A _g (in ²)	5.63		A_{g} (in ²)	4.36		
Table 5-1 From	Steel Manual		Table 5-1 From 5	Steel Manual		
Member	W16x31		Member	W16x31		
A _g (in ²)	9.13		A _g (in ²)	9.13		
φP _n (Kips)	411	Yielding	φP _n (Kips)	441	Yielding	
oPn (Kips)	334	Rupture	φP _n (Kips)	334	Rupture	
$\phi P_n \ge P_u$ (Yield)	Okay		φP _n ≥ P _u (Yield)	Okay		
Member	W16x31		Member	W16x31		

Calculation 3: Preliminary Bottom Chord Sizes for Truss 2

TOP CHORDS								
Monthesi	H		Manufactor	G		Monthees	٢	
Mellinel	0		Meriner	0		Mellinel		
Hu (KIDS)	860.13	Compression	Hu (Kips)	860.13	Compression	H, (Kips)	203.38	Compression
Length (ft)	31.5		Length (ft)	31.5		Length (ft)	31.5	
Trial Member	WT15x130.5		Trial Member	WT15x130.5		Trial Member	WT15x130.5	
Table 1-1 From.	Steel Manual		Table 1-1 From S	steel Manual		Table 1-1 From	Steel Manual	
A _g (in ²)	38.4		A _g (in ²)	38.4		A _g (in ²)	38.4	
r, (in)	4.45		(in) (in)	4.46		r _x (in)	4.46	
r _y (in)	3.53		r _y (in)	3.53		r _y (in)	3.53	
Theoretical K [Table C-C2.2]	0.5		Theoretical K [Table C-C2.2]	0.5		Theoretical K [Table C-C2.2]	0.5	
KL/ _x	42.4		KL/rx	42.4		KL/rx	42.4	
KL/r _y	53.5	Controls	KL/ry	53.5	Controls	KLIry	53.5	Controls
E (ksi)	29000		E (ksi)	29000		E (ksi)	29000	
F _y (ks)	50		F _y (ksi)	50		F _y (ksi)	50	
4.71* (E/F_) ^{1/2}	113		4.71* (E/Fy) ^{1/2}	113		4.71* (E/F _y) ^{1/2}	113	
Use Fcr = 0.65t	8^(Fy/Fe)*Fy		Use For = 0.658	^(Fy/Fe)*Fy		Use For = 0.658	8^(Fy/Fe)*Fy	
F _e (ksi)	100		F. (ksi)	100		F _e (ksi)	100	
F _{cr} (ksi)	41		F _{cr} (ksi)	41		F _{er} (ksi)	41	
P _n (Kips)	1557		P _n (Kips)	1557		P, (Kips)	1557	
¢P, (Kips)	1401		φP _n (Kips)	1401		φP _n (Kips)	1401	
φP _n (Kips)	1261		φP _n (Kips)	1261		φP _n (Kips)	1261	
Tabe 4-7 From.	Steel Manual		Table 4-7 From S	steel Manual		Table 4-7 From	Steel Manual	
Member	WT15x130.5		Member	WT15x130.5		Member	WT15x130.5	
KL (ft)	31.5		KL (f)	31.5		KL (ft)	31.5	
Axis	X-X		Axis	X·X		Axis	X-X	
r, (in)	4.45		r _x (in)	4.46		r _x (in)	4.45	
r _y (in)	3.53		(in)	3.53		r _y (in)	3.53	
φP _n (Kips)	1025		φP _n (Kips)	1025		φP _n (Kips)	1025	
¢P, ≥ P.	Okay		¢Pn ≥ Pu	Okay		¢Pn≥Pu	Okay	
Member	WT15x130.5		Member	WT15x130.5		Member	WT15x130.5	

Calculation 4: Preliminary Top Chord Sizes for Truss 2

Final Report: Signature Expression

Washington DC

Union Station Expansion

TOP CHORDS								
	,							
Member	œ		Member	Ø		Member	0	
P _u (Kips)	196.315	Compression	F _u (Kips)	534.45	Compression	P. (Kips)	634.45	Compression
Length (ft)	31.5		Length (ft)	31.5		Length (ft)	31.5	
Trial Member	WT15x130.5		Trial Member	WT15x130.5		Trisl Member	WT15x130.5	
Table 1-1 From	Steel Manua		Table 1-1 From (Steel Manual		Table 1-1 From	Steel Manua	
A _g (in ²)	38.4		A _g (in ²)	38.4		A _g (i∩²)	38.4	
r, (in)	4.46		r, (in)	4.46		r _x (in)	4.46	
r _y (in)	3.53		r _y (in)	3.53		ry (in)	3.53	
Theoretical K [Table C-C2.2]	0.5		Theoretical K [Table C-C2.2]	0.5		Theoretical K [Table C-C2.2]	0.5	
KL/r×	42.4		KL/,×	424		KL/'x	424	
KL/i,	53.5	Controls		53.5	Controls	KL/'y	53.5	Controls
E (ksi)	29000		E (Hsi)	29000		E (Hsi)	29000	
F _y (ksi)	50		F _y (ksi)	50		F _y (ksi)	50	
4.71* (E/Fy) ^{1/2}	113		4.71* (E/F _y) ^{1/2}	113		4.71* (E/F _y) ^{1/2}	113	
Use For = 0.658	9^(Fy,Fe)*Fy		Use For = 0.658	^(Fy,Fe) *Fy		Use For = 0.658	8^(Fy,Fe)*Fy	
F _e (ksi)	100		F _e (ksi)	100		F _e (ks)	100	
F _{cr} (ksi)	41		F _{er} (ksi)	41		For (ksi)	41	
P _n (Kips)	1551		P _n (Kips)	1557		P _n (Kips)	1551	
¢P, (Kips)	1401		φP _n (Kips)	1401		¢Pr (Kips)	- 401	
φP _n (Kips)	1261		¢P _n (Kips)	1261		¢P, (Kips)	1261	
Table 4-7 From (Steel Manual		Table 4-7 From (Steel Manua		Table 4-7 From	Steel Manua	
Member	WT15x130.5		Member	WT15x130.5		Member	WT15x130.5	
KL (ft)	31.5		KL (11)	31.5		KL (ft)	31.5	
Axis	X·X		Axis	XX		Axis	XX	
r, (in)	4.46		r _s (in)	4.46		r _x (in)	4.46	
r _y (in)	3.53		r _y (in)	3.53		ry (in)	3.53	
φP _n (Kips)	1025		φP _n (Kips)	1025		φPr (Kips)	1025	
¢Pn≥Pu	Okay		¢P _n ≥ P _u	Okay		¢Pr ≥ Pu	Okay	
Member	WT15x130.5		Member	WT15x130.5		Member	WT15x130.5	

Adviser: M. K. Parfitt Final Report: Signature Expression

I

Final Report: Signature Expression

April 7, 2009

BRACING (Tensi	(uo							
Member	18		Member	19		Member	22	
P. (Kips)	90.06	Tension	P _u (Kips)	1284.73	Tension	P _u (Kips)	956.26	Tension
Length (ft)	36.3		Length (ft)	36.3		Length (ft)	36.3	
Ð	0.9		÷	0.9		9	0.9	
F, (ksi)	42		F _y (ksi)	42		F _y (ksi)	42	
A ₃ (in ²)	26.19		A ₉ (in ²)	33.99		A _g (in ²)	25.30	
r (in)	2.89		r (in)	3.29		r (in)	2.84	
r _{design} (in)	3.00		rseign (i∩)	4.00		^{[design} (in)	3.00	
rfhal (in)*	1.50		rinal (in)*	2.00		final (in)*	1.50	
*2 Members V	Vill Ee Used		*2 Members V	VIII Be Used		*2 Members W	fill Be Used	
Irequired (In ⁴)	59		Irequired (in ⁴)	136		Irequired (in ⁴)	57	
Table 1-13 From	Steel Manual		Table 1-13 From	n Steel Manual		Table 1-13 From	Steel Manual	
Trial Member	HSS10x0.50		Trial Member	HSS10x0.50		Trial Member	HSS10k0.50	
A _a (in²)	13.9		A _g (in ²)	13.9		A _g (in ²)	13.9	
r (in)	3.38	Okay	r (in)	3.38	Okay	r (in)	3.38	Okay
I _{member} (i∩*)	159	Okay	Inember (in ⁴)	159	Okay	Imember (in ⁴)	159	Okay
Member	HSS10x0.50		Member	HSS10x0.50		Member	HSS10k0.50	
Member	23							
P _u (Kips)	730.29	Tension						
Length (ft)	36.3							
Φ	0.0							
F_{r} (ksi)	42							
A _g (in²)	19.32							
r (in)	2.48							
r _{design} (in)	3.00							
rmai (in)*	1.50							
*2 Members V	Vill Ee Used							
Irequired (in ⁴)	43							
Table 1-13 From	I Steel Manual							
Trial Member	HSS10x0.50							
A ₉ (in ²)	13.9							
r (in)	3.38	Okay						
In ember (in [*])	159	Okay						
Member	HSS10x0.50							

Calculation 6: Preliminary Tension Bracing Sizes for Truss 2

April 7, 2009

BRACING (Com	pression)				
Mombor	ç		Mambar	č	
	07				
P _u (Kips)	1171.56	Compression	P. (Kips)	1093.17	Compression
Length (ft)	36.3		Length (ft)	36.3	
Ð	0.9		Ð	0.9	
F _y (ksi)	42		F _y (ksi)	42	
A_g (in ²)	30.99		A ₉ (in ²)	28.92	
r (in)	3.14		r (in)	3.03	
r _{design} (in)	4.00		r _{design} (in)	4.00	
Ffinal (iri)*	2.00		r _{final} (in)*	2.00	
*2 Members V	Will Be Used		*2 Members M	All Be Used	
I _{required} (in ⁴)	124		Irequired (in ⁴)	116	
Table 1-13 From	1 Steel Manual		Table 1-13 From	Steel Manual	
Trial Member	HSS10x0.50		Trial Member	HSS10x0.50	
A _g (in ²)	13.9		A ₉ (in ²)	13.9	
r (in)	3.38	Okay	r (in)	3.38	Okay
I _{member} (in ⁴)	159	Okay	I _{member} (in ⁴)	159	Okay
Member	HSS10x0.50		Member	HSS10x0.50	

Calculation 7: Preliminary Compression Bracing Sizes for Truss 2

April 7, 2009

APPENDIX E: CURVED TENSION MEMBERS WITHIN TRUSS 2
April 7, 2009

	losep	h W. ۱	Wilche	r III		300 NO		Greet ND	1	Nev
s	oftware license	d to PSUAE				Part				
tie -						Ref				
						Ву		Date27-Feb	-09 Chd	
						File To	use 1. Strue	utra 1 Marr	Date/Time_03_Max	-2000.2
							uss 1, outu	aue i, meni	0.5-14181	1-2008 2
Job I	nform	ation								
	Er	ngineer	Che	ecked	Αρριον	ed				
Name:										
Date:	27-	-Feb-09								
Structu	re Type	SPACE FR	RAME							
Number	of Nodes	2	6 Highest No	ode	26					
Number	of Elemen	ts 2	5 Highest Be	eam	25					
Number	of Basic L	cad Cases		1						
Number	of Combin	ation Load C	ases	0						
ndudedi	in this print	out are data	ior:	_						
All	The	whole Struc	aure							
ndudedi	in this print	out are resul	is for load cas	os.						
A DESCRIPTION OF THE R. P. LEWIS CO., NAMES AND ADDRESS OF TAXABLE PARTY O										
Тур	pe	L/C		Name						
Тур	pe	L/C		Name						
Ty, Prim	pe iary	L/C 1	LCAD	Name						
Typ Prim	pe ary	L/C 1	LCAD	Name						
Typ Prim	pe Jary	L/C 1	LCAD	Name						
Tyr Prim Bear	^{pe} ^{Jary} n Maxi	1 1 imum N		Name						
Tyr Prim Beam	n Maxi	L/C 1 imum N	LCAD	<u>S</u>						
Tyr Prim Beam	n Maxi s to maxima Node A	L/C 1 imum N a are given fi Length	LCAD	S	d	Max My	ł	Mac Mz		
Prim Prim Beam	n Maxi s to maxima Node A	L/C 1 imum N a are given fi Length (ft)	LCAD Moment	S	d (ff)	Max My (kipft)	d (it)	Max Mz (kipîfi)		
Tyr Prim Beam Distances Beam	n Maxi s to maxima Node A	L/C 1 imum N a are given fi Length (ft) 1.845	LCAD	S	d (ff) 0.000	Max My (kipft) 0.000	d (it) 0.000	Max Mz (kip`ft) 0.000		
Ty Prim Beam Distances Beam	n Maxi s to maxima Node A	L/C 1 a are given fi Length (ft) 1.845	LCAD	S	d (ff) 0.000 0.000	Max My (kipft) 0.000 0.000	d (it) 0.000 1.845	Max Mz (kip`ft) 0.000 -650.586		
Typ Prim Beam Distances Beam	n Maxi s to maximu Node A	L/C 1 imum N a are given fr Length (ft) 1.845 1.796	LCAD	S. Name S. A. Max -ve Max -ve Max -ve	d (ff) 0.000 0.000 0.000	Max My (kipît) 0.000 0.000	d (it) 0.000 1.845	Max Mz (kip`ft) 0.000 -650.596		
Tyr Prim Distances Beam 1 2	n Maxi s to maximu Node A	L/C 1 imum N a are given fi Length (ft) 1.845 1.796	LCAD Moment: tom beam end L/C 1:LOAD 1:LOAD	Name Name S (A. Max -ve Max -ve Max -ve Max -ve	d (fl) 0.000 0.000 0.000 0.000	Max My (kip'ft) 0.000 0.000 0.000 0.000	d (it) 0.000 1.845 1.796	Max Mz (kp*ft) 0.000 -650.596 -1.22E 0		
Tyr Prim Distances Beam	pe iary n Maxi s to maximu Node A 1 2 3	L/C 1 imum N a are given fi Length (ft) 1.845 1.798 1.748	LCAD Moment: tom beam end L/C 1:LOAD 1:LOAD 1:LOAD	Name Name S (A. Max -ve Max -ve Max -ve Max -ve Max -ve	d (fl) 0.000 0.000 0.000 0.000 0.000	Max My (kip'ft) 0.000 0.000 0.000 0.000 0.000	d (it) 0.000 1.845 1.796	Max Mz (kpft) 0.000 -650.596 -1.22E 0		
Tyr Prim Distances Beam 1 2 3	pe iary n Maxi s to maximi Node A 1 2 3	L/C 1 imum N a are given fit Length (ft) 1.845 1.798 1.748	LCAD Moment: tom beam end L/C 1:LOAD 1:LOAD 1:LOAD	Name Name S (A. Max -ve Max -ve Max -ve Max -ve Max -ve Max -ve Max -ve	d (fi) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Max My (kip'ft) 0.000 0.000 0.000 0.000 0.000 0.000	d (it) 0.000 1.845 1.796 1.748	Max Mz (kpft) 0.000 -650.596 -1.22E 0 -1.71E 3		
Tyr Prim Distances Beam 1 2 3 4	n Maxi s to maximu Node A	L/C 1 imum N a are given fit Length (ft) 1.845 1.798 1.748 1.695	LCAD Moment: tom beam end L/C 1:LOAD 1:LOAD 1:LOAD 1:LOAD	Name Name S (A. Max -ve Max -ve Max -ve Max -ve Max -ve Max -ve Max -ve	d (fi) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Max My (kip'ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d (it) 0.000 1.845 1.796 1.748	Max Mz (kpff) 0.000 -650.596 -1.22E 0 -1.71E 3		
Tyr Prim Distances Beam 1 2 3 4	n Maxi s to maximi Node A 1 2 3 4	L/C 1 imum N a are given fi Length (ft) 1.845 1.796 1.798 1.748 1.895	LCAD International International Internation	Name Name S A. Max -ve Max -ve Max -ve Max -ve Max -ve Max -ve Max -ve Max -ve Max -ve	d (fl) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Max My (kip'ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d (it) 0.000 1.845 1.796 1.796 1.748	Max Mz (kpft) 0.000 -650.596 -1.22E 0 -1.71E 3 -2.11E 3		
Tyr Prim Distances Beam 1 2 3 4 5	n Maxi s to maximi Node A 1 2 3 4	L/C 1 imum N a are given fi Length (ft) 1.845 1.796 1.748 1.795 1.644	LCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD	S Name Name Name S Name Max -ve Max -ve Max -ve Max -ve Max -ve Max -ve Max -ve Max -ve	d (fi) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Max My (kip ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d (it) 0.000 1.845 1.796 1.748 1.695	Max Mz (kpft) 0.000 -650.596 -1.22E 3 -1.71E 3 -2.11E 3		
Tyr Prim Distances Beam 1 2 3 4 5	n Maxi s to maximum Node A 1 2 3 4 4	L/C 1 imum N a are given fr Length (ft) 1.845 1.798 1.798 1.748 1.895 1.844	LCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD	S A. Max -ve Max -ve	d (fi) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Max My (kip ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d (it) 0.000 1.845 1.796 1.796 1.748 1.695 1.644	Max Mz (kipift) 0.000 -650.596 -1.22E 0 -1.71E 3 -2.11E 3 -2.11E 3		
Tyr Prim Distances Beam 1 2 3 4 5 6	n Maxi s to maximu Node A 1 2 3 4 4 5 8	L/C 1 imum N a are given fr Length (ft) 1.845 1.798 1.748 1.895 1.844 1.500	LCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD	Name Name Max -ve	d (fi) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Max My (kip ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d (it) 0.000 1.845 1.796 1.796 1.748 1.695 1.644	Max Mz (kipift) 0.000 -650.598 -1.22E 0 -1.71E 3 -2.11E 3 -2.11E 3		
Tyr Prim Distances Beam 1 2 3 4 5 6	n Maxi s to maximu Node A 1 2 3 4 4 5 8	L/C 1 imum N a are given fr Length (ft) 1.845 1.796 1.748 1.695 1.644 1.500	LCAD LCAD Moments om beam end L/C 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD	Name Name Max -ve Max +ve Max +ve Max -ve Max +ve	d (fi) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Max My (kip'ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d (it) 0.000 1.845 1.798 1.798 1.748 1.695 1.644 1.599	Max Mz (kipift) 0.000 -850.598 -1.22E 3 -1./1E 3 -2.11E 3 -2.45E 3 -2.71E 3		
Tyr Prim Distances Beam 1 2 3 4 5 6 7	n Maxi ary n Maxi s to maximu Node A 1 2 3 4 4 5 5 5 3 7	L/C 1 imum N a are given fr Length (ft) 1.845 1.798 1.798 1.748 1.895 1.748 1.895 1.695 1.644	LCAD LCAD Moments tric 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD	Name Name Name Max -ve	d (ff) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Max My (kip'ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d (it) 0.000 1.845 1.798 1.798 1.748 1.695 1.695 1.644 1.599	Max Mz (kipîft) 0.000 -860.598 -1.22E 3 -1.71E 3 -2.11E 3 -2.45E 3 -2.71E 3		
Tyr Prim Distances Beam 1 2 3 4 5 6 7	n Maxi s to maximu Node A 1 2 3 4 4 5 5 6 7	L/C 1 imum N a are given fr Length (ft) 1.845 1.796 1.748 1.695 1.748 1.695 1.644 1.500	LCAD LCAD Moments tom beam end L/C 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD	Name Name Name Max -ve Max +ve Max +ve Max +ve Max +ve Max +ve Max +ve	d (fi) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Max My (kip'ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d (it) 0.000 1.945 1.798 1.798 1.798 1.748 1.695 1.695 1.644 1.599 1.538	Max Mz (kip'ft) 0.000 -850.598 -1.22E 3 -1.71E 3 -2.11E 3 -2.45E 3 -2.71E 3 -2.71E 3		
Tyr Prim Distances Beam 1 2 3 4 5 6 7 8	n Maxi ary n Maxi s to maximu Node A 1 2 3 4 4 5 5 5 8 7 7 8 8	L/C 1 imum N a are given fr Length (ft) 1.845 1.796 1.748 1.695 1.748 1.695 1.644 1.500 1.538 1.496	LCAD LCAD Moments tom beam end L/C 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD	Name Name Name Max -ve	d (ff) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Max My (kip'ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d (it) 0.000 1.945 1.798 1.798 1.798 1.695 1.695 1.644 1.599 1.538	Max Mz (kip'ft) 0.000 -860.598 -1.22E 3 -1.71E 3 -2.11E 3 -2.45E 3 -2.71E 3 -2.9E 3		
Tyr Prim Distances Beam 1 2 3 4 5 6 6 7 8	pe h Maximary h Maxima	L/C 1 imum N a are given fr Length (ft) 1.845 1.796 1.796 1.748 1.895 1.644 1.500 1.500 1.538 1.496	LCAD	Name Name Max -ve	d (ff) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Max My (kip'ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	d (it) 1.945 1.798 1.798 1.798 1.748 1.695 1.644 1.599 1.538 1.496	Max Mz (kip'ft) 0.000 -860.598 -1.22E 3 -1.71E 3 -2.11E 3 -2.45E 3 -2.71E 3 -2.9E 3 -3.04E 3		
Tyr Prim Distances Beam 1 2 3 4 5 6 7 8 8 9	n Maxi sto maximu Node A 1 2 2 3 4 4 5 5 3 4 5 5 3 3 7 7 3 3 9	L/C 1 imum N a are given fr Length (ft) 1.845 1.796 1.796 1.748 1.695 1.644 1.500 1.500 1.538 1.496 1.436	LCAD	Name Name Max -ve	d (ff) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Max My (kip'ft) 0.000	d (it) 1.945 1.798 1.798 1.798 1.748 1.695 1.644 1.599 1.538 1.496	Max Mz (kip'ft) 0.000 -850.598 -1.22E 3 -1.71E 3 -2.11E 3 -2.45E 3 -2.71E 3 -2.9E 3 -3.04E 3		
Tyr Prim Distances Beam 1 2 3 4 5 6 7 8 8 9	n Maxi ary n Maxim Node A 1 2 2 3 4 4 5 5 5 5 7 7 3 8 7 7 8 8 9	L/C 1 imum N a are given fi Length (ft) 1.845 1.796 1.748 1.895 1.644 1.500 1.638 1.496 1.436	LCAD LCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD ILCAD	Name Name Name Max -ve	d (ff) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Max My (kip'ft) 0.000	d (it) 0.000 1.845 1.798 1.798 1.798 1.695 1.644 1.599 1.538 1.496 1.436	Max Mz (kpTt) 0.000 -60.598 -1.22E 3 -1.71E 3 -2.11E 3 -2.45E 3 -2.9E 3 -3.04E 3 -3.04E 3 -3.12E 3		
Tyr Prim Distances Beam 1 2 3 4 5 6 7 8 8 9 9	n Maxi ary n Maxi s to maximi Node A 1 2 2 3 4 4 5 5 3 4 4 5 5 3 3 7 7 3 8 7 7 10	L/C 1 imum N a are given fi Length (ft) 1.845 1.798 1.798 1.798 1.748 1.695 1.644 1.500 1.638 1.496 1.438 1.401	LCAD LCAD Moment: om beam end L/C 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD	Name Name Max -ve Max -ve	d (ff) 0.000	Ma× My (kip'ft) 0.000	d (t) 0.000 1.845 1.798 1.798 1.748 1.695 1.644 1.599 1.538 1.496 1.438	Max Mz (kip'ft) 0.000 -650.598 -1.22E 3 -1.71E 3 -2.11E 3 -2.45E 3 -2.71E 3 -2.71E 3 -2.9E 3 -3.04E 3 -3.04E 3		
Tyr Prim Distances Beam 1 2 3 4 5 6 7 8 8 9 9	n Maxi ary n Maxi s to maximi Node A 1 2 3 4 4 5 5 3 4 5 5 3 3 4 5 5 3 3 7 7 3 8 9 9 10	L/C 1 imum N a are given fi Length (ft) 1.845 1.796 1.748 1.796 1.748 1.695 1.644 1.500 1.638 1.496 1.436 1.436	LCAD LCAD Moment: tom beam end L/C 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD 1:LOAD	S Name Name Name S Name Name Max -ve Max -ve	d (fi) 0.000	Max My (kip ft) 0.000	d (it) 0.000 1.845 1.798 1.798 1.798 1.798 1.798 1.644 1.599 1.538 1.496 1.436 1.436	Max Mz (kip'ft) 0.000 -650.598 -1.22E 3 -1.71E 3 -2.11E 3 -2.45E 3 -2.71E 3 -2.9E 3 -3.04E 3 -3.12E 3 3.14E 3		

Print Time/Date: 03/03/2009 20:36

STAAD.Pro for Windows Release 2003

Print Run 1 of 3

STADD Output for Curved Tension Members

April 7, 2009

So	fiware licensed	to PSUAE				Part				
e						Ref				
						ву		Date27-Feb	b-09 ^{Chd}	
						File T	russ 1, Struc	utre 1, Mem	Date/Time 03-N	1ar-2009
Beam	n Maxi	mum M	Moment	s Cont						
Beam	Node A	Length	L/C		d	Max My	d	Max Mz		
		(ft)			(ft)	(kip'ft)	(ft)	(kip ft)		
				Max +ve	0.000	0.000	0.000	-3.14E 3		
12	12	1.301	1:LOAD	Max -ve	0.000	0.000				
				Max +ve	0.000	0.000	0.000	-3.13E 3		
13	13	1.257	1:LOAD	Max -ve	0.000	0.000				
		4 000	41.045	Max +ve	0.000	0.000	0.000	-3.07E 3		
14	14	1.222	TELOAD	Max -ve	0.000	0.000	0.000	0.005.0		
15	15	1 170	11040	Max +ve	0.000	0.000	0.000	-2.98E 3		
10	10	1.175	T.LOAD	Max-ve	0.000	0.000	0.000	2.855 3		
16	16	1 147	1.LOAD	Max-ve	0.000	0.000	0.000	-2.00E 0		
	.~		1.20112	Max +ve	0.000	0.000	0.000	-2.69E 3		
17	17	1,105	1:LOAD	Max -ve	0.000	0.000				
				Max +ve	0.000	0.000	0.000	-2.51E 3		
18	18	1.086	1:LOAD	Max -ve	0.000	0.000				
				Max +ve	0.000	0.000	0.000	-2.3E 3		
19	19	1.049	1:LOAD	Max -ve	0.000	0.000				
				Max +ve	0.000	0.000	0.000	-2.07E 3		
20	20	1.023	1:LOAD	Max -ve	0.000	0.000				
				Max +ve	0.000	0.000	0.000	-1.82E 3		
21	21	1.001	1:LOAD	Max-ve	0.000	0.000				
22	22	0.000	1.040	Max +ve	0.000	0.000	0.000	-1.55E 3		
22	22	0.980	T:LOAD	Max-ve	0.000	0.000	0.000	1.075-0		
22	22	0.050	1-LOAD	Max +ve	0.000	0.000	0.000	-1.27E 3		
20	20	0.000	1.2080	Max+ve	0.000	0.000	0.000	-972.661		
24	24	0.951	1:LOAD	Max -ve	0.000	0.000				
				Max +ve	0.000	0.000	0.000	-665.458		
25	25	0.933	1:LOAD	Max -ve	0.000	0.000	0.933	0.000		
				Max +ve	0.000	0.000	0.000	-338.251		

STADD Output for Curved Tension Members Cont'd

Final Report: Signature Expression

April 7, 2009

	Curve	d Tension Member Analys	sis	
	Structure 1 Trus	ss 2	Moment From STAAD (ft-Kips)	3144.6
Member	19		Lever Arm (ft)	11.604
F (Kips)	640.87	Looking at 1 of the 2	Angle (Degrees)	30
F _x (Kips)	556.76	Members	R _x (Kips)	270.99
F _v (Kips)	317.38		R (Kips)	313
Preliminary Size	HSS10x0.5			
Preliminary Size	HSS10x0.5			
Preliminary Size Table 4-5 In S KL (ft)	HSS10x0.5 Steel Manual 23.42			
Preliminary Size Table 4-5 In S KL (ft) φP _n (Kips)	HSS10x0.5 Steel Manual 23.42 343	Окау		
Preliminary Size Table 4-5 In S KL (ft) φP _n (Kips) New Member	HSS10x0.5 Steel Manual 23.42 343	Okay		

Calculation 1: Curved Tension Member Analysis for Truss 2

April 7, 2009

APPENDIX F: LATERAL RESISTING SYSTEM CALCULATIONS

Final Report: Signature Expression

April 7, 2009

		Wind Param	eters For Struct	ure 1	
Basic Wind Speed (V)	Wind Exposure Category	Building Category	Importance Factor	Wind Directionality Factor (K _d)	Topographic Factor (K _{zt})
90 mph	В	111	1.15	0.85	1
Number of Stories	Building Height (ft)	N-S Building Length (ft)	E-W Building Length (ft)	L/B Along N-S Direction	L/B Along E-W Direction
5	88.167	179.50	189.00	0.950	1.05

 Table 1: Wind Parameters for Structure 1

	19	Wind Param	eters For Struct	utre 2	
Basic Wind Speed (V)	Wind Exposure Category	Building Category	Importance Factor	Wind Directionality Factor (K _d)	Topographic Factor (K _{zt})
90 mph	В	Ш	1.15	0.85	1
Number of Stories	Building Height (ft)	N-S Building Length (ft)	E-W Building Length (ft)	L/B Along N-S Direction	L/B Along E-W Direction
5	88.167	167.00	189.00	0.884	1.13

 Table 2: Wind Parameters for Structure 2

		Gust Fac	tor: N-S Direction	For Structure 1		
Stiffness	B (ft)	L (ft)	h (ft)	с	z (ft)	l _z
Rigid	189.00	179.50	88.167	0.3	64.667	0.268
l (ft)	E	L _z (ft)	Q	go	9v	G
320	1/3.0	400	0.82	3.4	3.4	0.82

		Gust Fac	tor: E-W Direction	For Structure 1		
Stiffness	B (ft)	L (ft)	h (ft)	с	z (ft)	l _z
Rigid	179.50	189.00	88.167	0.3	64.667	0.268
l (ft)	€	L _z (ft)	Q	go	9v	G
320	1/3.0	400	0.82	3.4	3.4	0.82

Table 3: Gust Factors for Structure 1

Final Report: Signature Expression

April 7, 2009

	67.	Gust Fac	tor: N-S Direction	For Structure 2		
Stiffness	B (ft)	L (ft)	h (ft)	с	z (ft)	l ₂
Rigid	189.00	167.00	88.167	0.3	64.667	0.268
l (ft)	E	L _z (ft)	Q	go	9v	G
320	1/3.0	400	0.82	3.4	3.4	0.82
		Gust Fa	actor: E-W Directi	on Structure 2	1	
Stiffness	B (ft)	L (ft)	h (ft)	с	z (ft)	lz
Rigid	167.00	189.00	88.167	0.3	64.667	0.268
1 (ft)	E	L _z (ft)	Q	ga	9v	G
320	1/3.0	400	0.82	3.4	3.4	0.83

Table 4:	Gust	Factors	for	Structure	2
----------	------	---------	-----	-----------	---

	Wind Factor	rs: N-S Direction	For Strucutre 1	
C _p , Windward	C _p , Leeward	Gust Factor	GCpi	GCpi
0.8	-0.5	0.82	±0.18	± 0.55

-0.5	0.82	±0.18	
Table 5: Wi	nd Factors	for Structure	1

±0.18

0.8

0.8

-0.5

 ± 0.55

 ± 0.55

	Wind Factor	s: N-S Direction	For Structure 2	
C _p , Windward	C _p , Leeward	Gust Factor	GCpi	GC _{pl}
0.8	-0.5	0.82	±0.18	± 0.55
	Wind Fact	ors: E-W Directio	on Structure 2	
C _p , Windward	C _p , Leeward	Gust Factor	GCpi	GCpi

Table 6: Wind Factors for Structure 2

0.83

					Seismi	c Parameters	For Structure	e 1					
Ss	S1	Site Class	Occupancy Category	Importance Factor	Fa	Fv	S _{MS}	S _{M1}	S _{DS}	S _{D1}	Seismic Design Category	R	Cu
0.153	0.05	D	III	1.25	1.6	2.4	0.245	0.120	0.163	0.080	В	3.25	1.7
		22											
т,	т	TL	Cs	Roof Dead Load (psf)	Floor Dead Load (psf)	Snow Load (psf)	Wall Load (psf)	W _{roof} (Kips)	W _{floor} (Kips)	W _{Total} (Kips)	A (ft²)	P (ft)	V (Kips)
0.787	1.34	8	0.0230	175	See Below	19	35	5937	48276	54213	33926	737	1248

Table 7: Seismic Parameters for Structure 1

Final Report: Signature Expression

April 7, 2009

		46 046	Weight of	Structure 1		13	
Level	Slab (psf)	Beams (psf)	Girders (psf)	Columns (psf)	Trusses (psf)	Floor Dead Load (psf)	W _{floor} (Kips)
Roof	51	40	84	-	-	175	5937
3rd Floor	51	40	84	61		236	8006
2nd Floor	51	40	84	82	-	257	8719
1st Floor	51	40	84	109		284	9635
Mezzazine	51	135		132		318	10788
Ground	81	-	-	-	247	328	11128
Track Level	-	-			. <u>2</u>		-

Table 8: Weight of Structure 1

		(3)	an		Seismi	c Parameters	For Structure	e 2				2	
Ss	S ₁	Site Class	Occupancy Category	Importance Factor	Fa	Fv	S _{MS}	S _{M1}	S _{DS}	S _{D1}	Seismic Design Category	R	Cu
0.153	0.05	D	III	1.25	1.6	2.4	0.245	0.120	0.163	0.080	В	3.25	1.7
T,	т	TL	Cs	Roof Dead Load (psf)	Floor Dead Load (psf)	Snow Load (psf)	Wall Load (psf)	W _{roof} (Kips)	W _{floor} (Kips)	W _{Total} (Kips)	A (ft ²)	P (ft)	V (Kips)
0.787	1.34	8	0.0230	167	See Below	19	35	5666	46648	52313	33926	737	1204

Table 9: Seismic Parameters for Structure 2

	Weight of Structure 2								
Level	Slab (psf)	Beams (psf)	Girders (psf)	Columns (psf)	Trusses (psf)	Floor Dead Load (psf)	W _{floor} (Kips)		
Roof	51	40	76	· · · ·		167	5666		
3rd Floor	51	40	76	61	•	228	7735		
2nd Floor	51	40	76	82	-	249	8447		
1st Floor	51	40	76	99	-	266	9024		
Mezzazine	51	135	-	132		318	10788		
Ground	81		-	•	233	314	10653		
Track Level	Q	1.1	-	1.12	-				

Table 9: Weight of Structure 2

<u>Adviser: M. K. Parfitt</u>

Final Report: Signature Expression

April 7, 2009

		1		Wind (Nort	h-South) For	Structure 1	1			
Level	Height (Feet)	Tributary Area (Feet)	Kz	q _z (psf)	Windward (psf)	Leeward (psf)	Total (psf)	Story Force (Kips)	Story Shear (Kips)	Overturning Moment (Ft-Kips)
Roof	88.17	5.75	0.95	19.3	23.3	-18.5	41.8	43.1	43.1	247.8
3	76.67	11.5	0.92	18.6	22.5	-18.5	41.0	171.6	214.7	1730.3
2	65.17	11.5	0.87	17.6	14.8	-10.4	25.2	368.5	583.2	6318.5
1	53.67	11.875	0.82	16.6	13.9	-10.4	24.3	624.6	1207.8	16952.7
Mezzaine	41.42	15.1	0.77	15.6	13.1	-10.4	23.5	1015.0	2222.8	42854.0
Ground	23.5	10.96	0.65	13.2	11.0	-10.4	21.5	1015.0	2222.8	42854.0
Track Level	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1015.0	2222.8	42854.0

		10		Wind (Nort	h-South) For	Strucutre 1				
Level	Height (Feet)	Tributary Area (Feet)	Kz	q _z (psf)	Windward (psf)	Leeward (psf)	Total (psf)	Story Force (Kips)	Story Shear (Kips)	Overturning Moment (Ft-Kips)
Roof	88.17	5.75	0.95	19.3	23.3	-18.5	41.8	45.4	45.4	261.2
3	76.67	11.5	0.92	18.6	22.5	-18.5	41.1	180.9	226.3	1823.7
2	65.17	11.5	0.87	17.6	14.8	-10.4	25.2	388.4	614.7	6659.7
1	53.67	11.875	0.82	16.6	13.9	-10.4	24.4	658.3	1273.1	17868.4
Mezzaine	41.42	15.1	0.77	15.6	13.1	-10.4	23.5	1070.0	2343.0	45170.1
Ground	23.5	10.96	0.65	13.2	11.1	-10.4	21.5	1070.0	2343.0	45170.1
Track Level	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1070.0	2343.0	45170.1

Calculation 1: Shear & Moment Due to Wind Forces for Structure 1

	Wind (North-South) For Structure 2										
Level	Height (Feet)	Tributary Area (Feet)	Kz	q _z (psf)	Windward (psf)	Leeward (psf)	Total (psf)	Story Force (Kips)	Story Shear (Kips)	Overturning Moment (Ft-Kips)	
Roof	88.17	5.75	0.95	19.3	23.3	-18.5	41.8	40.1	40.1	230.5	
3	76.67	11.5	0.92	18.6	22.5	-18.5	41.0	159.7	199.8	1609.8	
2	65.17	11.5	0.87	17.6	14.8	-10.4	25.2	342.8	542.6	5878.5	
1	53.67	11.875	0.82	16.6	13.9	-10.4	24.3	581.1	1123.7	15772.2	
Mezzaine	41.42	15.1	0.77	15.6	13.1	-10.4	23.5	944.3	2068.0	39869.8	
Ground	23.5	10.96	0.65	13.2	11.0	-10.4	21.5	944.3	2068.0	39869.8	
Track Level	0.0	0.0	0.0	0.0	0.0	0.0	0.0	944.3	2068.0	39869.8	

				Wind (North	n-South) For	Strucutre 2				
Level	Height (Feet)	Tributary Area (Feet)	Kz	q _z (psf)	Windward (psf)	Leeward (psf)	Total (psf)	Story Force (Kips)	Story Shear (Kips)	Overturning Moment (Ft-Kips)
Roof	88.17	5.75	0.95	19.3	23.3	-18.5	41.9	45.5	45.5	261.5
3	76.67	11.5	0.92	18.6	22.6	-18.5	41.1	181.1	226.6	1826.2
2	65.17	11.5	0.87	17.6	14.8	-10.5	25.3	388.9	615.6	6668.8
1	53.67	11.875	0.82	16.6	14.0	-10.5	24.4	659.3	1274.9	17893.4
Mezzaine	41.42	15.1	0.77	15.6	13.1	-10.5	23.6	1071.6	2346.5	45235.0
Ground	23.5	10.96	0.65	13.2	11.1	-10.5	21.5	1071.6	2346.5	45235.0
Track Level	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1071.6	2346.5	45235.0

Calculation 2: Shear & Moment Due to Wind Forces for Structure 2

Final Report: Signature Expression

April 7, 2009

-		Seismic F	or Structur	e 1	
Level	Height (ft)	Tributary Area (ft)	Cvx	F _x (Kips)	Overturning Moment (ft-Kips)
Roof	88.17	5.75	0.25	316	1815.4
3rd Floor	76.67	11.5	0.31	388	7677.9
2nd Floor	65.17	11.5	0.23	283	22928.6
1st Floor	53.67	11.875	0.15	181	30187.6
Mezzanine	41.42	15.1	0.06	80	48421.6
Ground	23.5	10.96	1.00	1248	48421.6
Track Level	0	0	1.00	1248	48421.6

Calculation 3: Shear & Moment Due to Seismic Forces for Structure 1

Seismic For Structure 2								
Level	Height (ft)	Tributary Area (ft)	Cvx	F _x (Kips)	Overturning Moment (ft-Kips)			
Roof	88.17	5.75	0.25	300	1724.7			
3rd Floor	76.67	11.5	0.31	378	7347.1			
2nd Floor	65.17	11.5	0.23	277	22120.0			
1st Floor	53.67	11.875	0.14	166	29055.3			
Mezzazine	41.42	15.1	0.07	84	46603.0			
Ground	23.5	10.96	1.00	1204	46603.0			
Track Level	0	0	1.00	1204	46603.0			

Calculation 4: Shear & Moment Due to Seismic Forces for Structure 2

Final Report: Signature Expression

Union Station Expansion Washington DC

April 7, 2009

Brace Frame 1: Structure 1							
Level	Displacement (in)	Stiffness (Kip/in)					
Roof	0.0017	588.24					
3	0.0013	769.23					
2	0.0008	1250.00					
1	0.0005	2000.00					
Mezzanine	0.0001	10000.00					
Т	otal	2921.49					
Brace	e Frame 2: Stru	cture 1					
Loval	Displacement	Stiffness					
Level	(In)	(Kip/in)					
Roof	0.0017	588.24					
3	0.0013	769.23					
2	0.0009	1111.11					
1	0.0005	2000.00					
Mezzanine	0.0001	10000.00					
Т	2893.72						
Brace	e Frame 3: Stru	cture 2					
Louis	Displacement	Stiffness					
Level	(in)	(Kip/in)					
Roof	0.0016	625.00					
3	0.0012	833.33					
2	0.0008	1250.00					
1	0.0004	2500.00					
Mezzanine	0.0001	10000.00					
Т	otal	3041.67					
Brace	e Frame 4: Stru	cture 2					
	Displacement	Stiffness					
Level	(In)	(Kip/in)					
Roof	0.0017	588.24					
3	0.0013	769.23					
2	0.0009	1111.11					
1	0.0005	2000.00					
Mezzanine	0.0002	5000.00					

Brace	Frame A: Struct	ture 1
Level	Displacement (in)	Stiffness (Kip/in)
Roof	0.0022	454.55
3	0.0016	625.00
2	0.0011	909.09
1	0.0006	1666.67
Mezzanine	0.0002	5000.00
٦	otal	1731.06

Brace	Frame B: Struct	ture 1
Level	Displacement (in)	Stiffness (Kip/in)
Roof	0.0021	476.19
3	0.0015	666.67
2	0.001	1000.00
1	0.0006	1666.67
Mezzanine	0.0002	5000.00
1.	Total	1761.90

Brace	Frame C: Struc	ture 2
Level	Displacement (in)	Stiffness (Kip/in)
Roof	0.0021	476.19
3	0.0016	625.00
2	0.001	1000.00
1	0.0006	1666.67
Mezzanine	0.0002	5000.00
1	Total	1753.57

Brace	Frame D: Struct	ture 2
Level	Displacement (in)	Stiffness (Kip/in)
Roof	0.0018	555.56
3	0.0014	714.29
2	0.0009	1111.11
1	0.0005	2000.00
Mezzanine	0.0002	5000.00
1	Total	1876.19

Calculation 5: Stiffness of Brace Frames

Final Report: Signature Expression

April 7, 2009

Stone	Fran	ne Stiffness	s: Structur	re 1	Center o	of Rigidity
Story	1	2	А	В	X _R (ft)	Y _R (ft)
Roof	588.24	588.24	454.55	476.19	92.30	88.34
3	769.23	769.23	625.00	666.67	91.45	88.34
2	1250.00	1111.11	909.09	1000.00	90.00	83.14
1	2000.00	2000.00	1666.67	1666,67	94.50	88.34
Mezzanine	10000.00	10000.00	5000.00	5000.00	94.50	88.34

Ohen	Fran	ne Stiffnes	s Structur	e2	Center o	f Rigidity
Story	3	4	С	D	X _R (ft)	Y _R (ft)
Roof	625.00	588.24	476.19	555.56	87.23	79.60
3	833.33	769.23	625.00	714.29	88.20	78.80
2	1250.00	1111.11	1000.00	1111.11	89.53	77.26
1	2500.00	2000.00	1666.67	2000.00	85.91	72.96
Mezzanine	10000.00	5000.00	5000.00	5000.00	94.50	54.72

Calculation 5: Stiffness of Brace Frames

	Torsiona	Moment Due To Win	d: Struc	ture 1		
Level	Story Force (Kips) North-South	Story Force (Kips) East-West	e _{N-S} (ft)	e _{E-W} (ft)	M _{N-S} (ft-kips)	M _{E-W} (ft-kips)
Roof	43.10	45.40	0.00	-2.20	0.00	-99.77
3	171.60	180.90	0.00	-3.05	0.00	-551.45
2	368.50	388.40	5.20	-4.50	1914.79	-1747.80
1	624.60	658.30	0.00	0.00	0.00	0.00
Mezzanine	1015.00	1070.00	0.00	0.00	0.00	0.00

	Torsional	Moment Due To Win	d: Struc	ture 2		
Level	Story Force (Kips) North-South	Story Force (Kips) East-West	e _{N-S} (ft)	e _{E-W} (ft)	M _{N-S} (ft-kips)	M _{E-W} (ft-kips)
Roof	40.10	45.50	2.49	-7.27	99.74	-330.75
3	159.70	181.10	3.28	-6.30	524.35	-1140.93
2	342.80	388.90	4.83	-4.97	1655.19	-1934.27
1	581.10	659.30	9.12	-8.59	5299.86	-5663.99
Mezzanine	944.30	1071.60	3.61	0.00	3411.44	0.00

	Torsional Moment Due To	Seismic: Stru	cture 1	10-01010	
Level	Story Force (Kips)	e _{N-S} (ft)	e _{E-W} (ft)	M _{N-S} (ft-kips)	M _{E-W} (ft-kips)
Roof	340.00	0.00	-2.20	0.00	-747.21
3	418.00	0.00	-3.05	0.00	-1274.23
2	304.00	5.20	-4.50	1579.64	-1368.00
1	195.00	0.00	0.00	0.00	0.00
Mezzanine	86.00	0.00	0.00	0.00	0.00

	Torsional Moment Due To Seisr	nic: Stru	cture 2		
Level	Story Force (Kips)	e _{N-S} (ft)	e _{E-W} (ft)	M _{N-S} (ft-kips)	M _{E-W} (ft-kips)
Roof	300.00	2.49	-7.27	746.21	-2180.77
3	378.00	3.28	-6.30	1241.10	-2381.40
2	277.00	4.83	-4.97	1337.48	-1377.71
1	166.00	9.12	-8.59	1513.98	-1426.09
Mezzanine	84.00	3.61	0.00	303.46	0.00

Calculation 6: Torsional Moment Due to Wind & Seismic on Both Structures

Force (Kips)

20.66

40.10

Force

(Kips)

24.50

Force (Kips)

83.04 76.66

159.70

Adviser: M. K. Parfitt

Final Report: Signature Expression

April 7, 2009

Wind	d Direct Ford	es: Structu	e 1 (N-S Direc	tion)		Wind	Direct Ford	es: Structu	re 2 (N-S D
Roof	K,	P	ΣK	Force (Kips)	R	oof	K,	P	ΣK
1	588.24	43.10	1176.47	21.55		3	625.00	40.10	1213.2
2	588.24	43.10	1176.47	21.55		4	588.24	40.10	1213.24
			Total	43.10					Total
Wind	Direct Forc	es: Structur	e 1 (E-W Dire	ction)		Wind	Direct Forc	es: Structur	e 2 (E-W [
Roof	ĸ	P	ΣK	Force (Kips)	R	oof	K,	P	ΣK
A	454.55	45.40	930.74	22.17		С	476.19	45.50	1031.7
В	476.19	45.40	930.74	23.23		D	555.56	45.50	1031.7
			Total	45.40	1				Total
Wind	d Direct Ford	es: Structu	e 1 (N-S Direc	tion)		Wind	Direct Ford	es: Structu	re 2 (N-S [
				Force		-			
Floor	ĸ	Р	ΣKj	(Kips)	3rd	Floor	ĸ	Р	٤Kı
1	769.23	171.60	1538.46	85.80		3	833.33	159.70	1602.5
2	769.23	171.60	1538.46	85.80		4	769.23	159.70	1602.5
			Total	171.60					Total
Wind	Direct Force	es: Structur	e 1 (E-W Dire	ction)		Wind	Direct Forc	es: Structur	e 2 (E-W I
d Floor	K,	Ρ	ΣK	Force (Kips)	3rd	Floor	ĸ	P	ΣK
A	625.00	180.90	1291.67	87.53		С	625.00	181.10	1339.2
В	666.67	180.90	1291.67	93.37		D	714.29	181.10	1339.2
1			Total	180.90					Total
Wind	d Direct Ford	es: Structu	re 1 (N-S Direc	tion)		Wind	Direct Ford	es: Structu	re 2 (N-S I
d Fileses	K	-	FIL	Force	0.1	El	K	-	=1/
1 Floor	r,	Р	2K	(Kips)	2nd	Floor	r,	P	2K
1	1250.00	368.50	2361.11	195.09		3	1250.00	342.80	2361.1
2	1111 11	368 50	2361 11	173 41		4	1111 11	342.80	2361.1
~		000.00	Total	368.50				012.00	Total
Wind	Direct Ford	es: Structur	e 1 (E-W Dire	ction)		Wind	Direct Forc	es: Structur	e 2 (E-W
Floor	K,	P	ΣK	Force (Kips)	2nd	Floor	K,	P	ΣKi
۵	909.09	388.40	1909.09	184.95		C	1000.00	388.90	2111 1
R	1000.00	388.40	1909.00	203.45		D	1111 11	388.90	2111
0	1000.00	000.40	Total	388.40				000.00	Tota
Wind	d Direct Ford	ces: Structu	re 1 (N-S Direc	tion)		Wind	Direct Ford	es: Structu	re 2 (N-S
Floor	K,	Р	ΣK	Force (Kips)	1st	Floor	K	Р	ΣKi
1	2000.00	624 60	4000.00	312.30		3	2500.00	581.10	4500.0
2	2000.00	624.60	4000.00	312.30		4	2000.00	581.10	4500 0
			Total	624.60					Tota
						Wind	Direct Force	ac Structure	D IT IN
Wind	Direct Ford	es: Structur	e 1 (E-W Dire	ction)	1			ea. olluului	EZ E-VV
Wind st Floor	Direct Ford	es: Structur P	e 1 (E-W Direc ΣK _i	Force	1st	Floor	K	P	ε 2 (E-VV ΣKi
Wind t Floor	Direct Ford	P	e 1 (E-W Direc ΣK,	tion) Force (Kips)	1st	Floor	Ki	P	2 (E-W ΣK,
Wind t Floor	Direct Ford K, 1666.67	P 658.30	e 1 (E-W Direc ΣK ₁ 3333.33	tion) Force (Kips) 329.15	1st	Floor C	K ₁ 1666.67	P 659.30	2 (E-W ΣK ₁ 3666.6
Wind t Floor A B	Direct Forc K _i 1666.67 1666.67	P 658.30 658.30	e 1 (E-W Direc ΣK, 3333.33 3333.33 Total	tion) Force (Kips) 329.15 329.15 658.30	1st	Floor C D	K ₁ 1666.67 2000.00	P 659.30 659.30	2 (E-W ΣK, 3666.6 3666.6 Total
Winc t Floor A B	Direct Forc K _i 1666.67 1666.67	es: Structur P 658.30 658.30	e 1 (E-W Direc ΣK, 3333.33 3333.33 Total	tion) Force (Kips) 329.15 329.15 658.30	1st	Floor C D	K ₁ 1666.67 2000.00	P 659.30 659.30	2 (E-W ΣK _i 3666.6 3666.6 Total
Wind t Floor A B Wind	Direct Forc K, 1666.67 1666.67	P 658.30 658.30 es: Structu	e 1 (E-W Direc ΣK, 3333.33 3333.33 Total re 1 (N-S Direc	tion) Force (Kips) 329.15 329.15 658.30 tion)	1st	Floor C D Wind	K ₁ 1666.67 2000.00 Direct Ford	P 659.30 659.30 es: Structu	2 (Ε-W ΣK, 3666.6 3666.6 Total
Wind at Floor A B Wind ezzanine	Direct Forc K ₁ 1666.67 1666.67 Direct Forc K ₁	P 658.30 658.30 ces: Structu P	e 1 (E-W Diret ΣK, 3333.33 3333.33 Total e 1 (N-S Diret ΣK,	tion) Force (Kips) 329.15 329.15 658.30 tion) Force (Kips)	1st	Floor C D Wind zanine	K ₁ 1666.67 2000.00 Direct Forc	P 659.30 659.30 es: Structu	e 2 (E-W ΣK, 3666.6 3666.6 Total re 2 (N-S
Wind at Floor A B Wind zzanine	Direct Force K ₁ 1666.67 1666.67 Direct Force K ₁ 10000.00	es: Structur P 658.30 658.30 ces: Structu P 1015.00	e 1 (E-W Direc ΣK _i 3333.33 3333.33 Total e 1 (N-S Direc ΣK _i 20000.00	tion) Force (Kips) 329.15 329.15 658.30 tion) Force (Kips) 507.50	Mezz	Floor C D Wind zanine 3	K ₁ 1666.67 2000.00 Direct Forc K ₁ 10000.00	P 659.30 659.30 es: Structu P 944.30	e 2 (E-W ΣK _i 3666.6 3666.6 Total re 2 (N-S I ΣK _i 15000.1
Wind at Floor A B Wind ezzanine 1 2	Direct Ford K ₁ 1666.67 1666.67 Direct Ford K ₁ 10000.00 10000.00	es: Structur P 658.30 658.30 ces: Structur P 1015.00 1015.00	e 1 (E-W Dired ΣK _i 3333.33 Total Total ε 1 (N-S Dired ΣK _i 20000.00 20000.00	tion) Force (Kips) 329.15 329.15 658.30 tion) Force (Kips) 507.50 507.50	Mezz	Floor D Wind zanine 3 4	Ki 1666.67 2000.00 Direct Ford Ki 10000.00 5000.00	P 659.30 659.30 es: Structu P 944.30 944.30	e 2 (E-W ΣK ₁ 3666.6 Total re 2 (N-S) ΣK ₁ 15000.
Wind Floor A B Wind zzanine 1 2	Direct Ford K ₁ 1666.67 1666.67 Direct Ford K ₁ 10000.00 10000.00	es: Structur P 658.30 658.30 ces: Structu P 1015.00 1015.00	e 1 (E-W Direc ΣΚ, 3333.33 3333.33 Total e 1 (N-S Direc ΣΚ, 20000.00 Total	tion) Force (Kips) 329.15 329.15 658.30 tion) Force (Kips) 507.50 507.50 1015.00	Mezz	Floor C D Wind zanine 3 4	K ₁ 1666.67 2000.00 Direct Forc K ₁ 10000.00 5000.00	P 659.30 659.30 es: Structu P 944.30 944.30	e 2 (E-W ΣK ₁ 3666.6 Total re 2 (N-S I ΣK ₁ 15000.1 Total
Wind Floor A B Wind zanine 1 2 Wind	Direct Ford K ₁ 1666.67 1666.67 1666.67 Direct Ford 10000.00 10000.00	es: Structur P 658.30 658.30 ces: Structur P 1015.00 1015.00 es: Structur	e 1 (E-W Direc ΣΚ, 3333.33 Total re 1 (N-S Direc ΣΚ, 2000.00 Total e 1 (E-W Direc	tion) Force (Kips) 329.15 329.15 658.30 tion) Force (Kips) 507.50 507.50 1015.00 tion)	Mezz	Floor C D Wind zanine 3 4 Wind	K ₁ 1666.67 2000.00 Direct Forc K ₁ 10000.00 5000.00 Direct Forc	P 659.30 659.30 es: Structu P 944.30 944.30 es: Structur	e 2 (E-W ΣK _i 3666.6 3666.6 Total re 2 (N-S I ΣK _i 15000.1 15000.1 Total e 2 (E-W
Wind Floor A 3 Wind anine 1 2 Wind anine	Direct Force K ₁ 1666.67 1666.67 1666.67 10000.00 10000.00 Direct Force K ₁	es: Structur P 658.30 658.30 es: Structur P 1015.00 1015.00 res: Structur P	e 1 (E-W Direct ΣK, 3333.33 Total e 1 (N-S Direct ΣK, 20000.00 Total e 1 (E-W Direct ΣK,	tion) Force (Kips) 329.15 329.15 658.30 tion) Force (Kips) 507.50 1015.00 tion) Force (Kins)	Mezz	Floor C D Wind zanine 3 4 Wind zanine	K ₁ 1666.67 2000.00 Direct Forc K ₁ 10000.00 Direct Forc K ₁	P 659.30 659.30 es: Structu 944.30 944.30 944.30 P	2 (E-W) ΣK ₁ 3666.6 3666.6 Total re 2 (N-S I ΣK ₁ 15000.1 Total 2 (E-W) ΣK ₁ 2 (E-W) ΣK ₁
Wind loor Wind mine Wind	Direct Force K ₁ 1666.67 1666.67 1666.67 10000.00 10000.00 Direct Force K ₁ 5000.00	es: Structur P 658.30 658.30 P 1015.00 1015.00 es: Structur P 1070.00	e 1 (E-W Direc ΣK, 3333.33 Total re 1 (N-S Direc ΣK, 20000.00 20000.00 Total e 1 (E-W Direc ΣK, 10000.00	tion) Force (Kips) 329.15 329.15 329.15 658.30 tion) Force (Kips) 507.50 1015.00 1015.00 tion) Force (Kips) 535.00	Mezz	Floor C D Vind zanine 3 4 Wind zanine C	K ₁ 1666.67 2000.00 Direct Forc K ₁ 10000.00 5000.00 Direct Forc K ₁ 5000.00	P 659.30 659.30 es: Structu P 944.30 944.30 es: Structur P 1071.60	2 (E-W ΣK ₁ 3666.6 3666.6 Total re 2 (N-S I ΣK ₁ 15000.1 15000.1 Total e 2 (E-W ΣK ₁ 15000.2 15000.1 150000.1 15000.1
Wind Floor A B Wind anine 1 2 Wind anine A B	Direct Foro Ki 1666.67 1666.67 10000.00 10000.00 10000.00 10000.00 00000.00 5000.00	es: Structur P 658.30 658.30 658.30 es: Structur P 1015.00 1015.00 es: Structur P 1070.00	e 1 (E-W Diret ΣK, 3333.33 Total e 1 (N-S Diret ΣK, 2000.00 Total e 1 (E-W Diret ΣK, 10000.00	tion) Force (Kips) 329.15 329.15 329.15 329.15 329.15 329.15 329.75 307.50 507.50 1015.00 tion) Force (Kips) 507.50 507.50 507.50 507.50 507.50 505.50 535.00	Mezz	Floor C D Vind zanine 3 4 Wind zanine C D	K ₁ 1666.67 2000.00 Direct Forc K ₁ 10000.00 5000.00 Direct Forc K ₁ 5000.00	P 659.30 659.30 es: Structu P 944.30 944.30 944.30 944.30 1071.60 1071.60	2 (E-W ΣK _i 3666.6 3666.6 Total re 2 (N-S I ΣK _i 15000.1 15000.1 Total e 2 (E-W ΣK _i 15000.1 1

Wind Force (Kips) 84.51 96.59 loor K, P ΣK 181.1 1339.29 1339.29 714.29 181.10 Total 181.10 Wind Direct Forces: Structure 2 (N-S Dire ection) Force P loor K ΣK (Kips) 181.48 2361.11 1250.00 342.80 1111.11 342.80 Tota 342.80 Wind Direct Forces: Struct (E-WD Force Ρ K, ΣK Floo (Kips) 184.22 388.90 2111.11 1000.00 2111.11 Total 204.68 388.90 1111.11 388.90 Wind Direct Forces: Structure 2 (N-S Direction) Force Ρ ΣK_i K, loor (Kips) 4500.00 581.10 322.83 581.10 2000.00 581.10 Total Wind (E-WD Direct Fo Struc Force loor K, Ρ ΣK (Kips) 3666.6 659.30 299.68 2000.00 659.30 3666 6 Tota 659.30 Wind Direct Forces: Structure 2 (N-S Dire ction) Force anine K P ΣK_i (Kips) 629.53 314.77 15000.00 10000.00 944.30 5000.00 944.30 15000.00 Tota Wind Direct Forces: Structu 2 (E-W [Force ΣK K P anine (Kips) 10000.00 535.80 535.80 5000.0 1071.60 5000.00 1071.60

1071.60

Calculation 7: Direct Forces Due to Wind on Both Structures

Force (Kips) 154.55 145.45

300.00

(Kips) 138.46 161.54

300.00

378.00

(Kips) 176.40 201.60

378.00

(Kips) 146.65

130.35

(Kips) 131.21

145.79 277.00

(Kips) 92.22 73.78

166.00

Force (Kips) 75.45 90.55 166.00

(Kips) 56.00 28.00 84.00

Force (Kips)

42.00 42.00 84.00

277.00

ion) Force

ion) Force (Kips) 196.56 181.44

ction) Force

Adviser: M. K. Parfitt

Final Report: Signature Expression

April 7, 2009

Seism	nic Direct Fo	rces: Struct	ure 1 (N-S Dire	ection)	Seismi	ic Direct Fo	rces: Struct	ure 2 (N-S Dire	ection)
Roof	K,	Р	ΣK,	Force	Roof	K,	Р	ΣKi	Force
	500.04	2.40.00	1176 47	(Kips)	2	605.00	200.00	1010.04	(Kips
2	588.24	340.00	1176.47	170.00	4	588.24	300.00	1213.24	145.4
4	000.24	040.00	Total	340.00		000.24	000.00	Total	300.0
Seism	ic Direct Fo	rces: Struct	ure 1 (E-W Dire	ection)	Seismi	c Direct Fo	ces: Structi	ure 2 (E-W Dire	ection)
Roof	K	D	SK.	Force	Poof	K.	D	SK.	Force
Roor	N	F	214	(Kips)	Ruoi	ry .	5	214	(Kips)
A	454.55	340.00	930.74	166.05	С	476.19	300.00	1031.75	138.4
В	476.19	340.00	930.74	173.95	D	555.56	300.00	1031.75	161.5
		·	Total	340.00				Total	300.0
Seism	nic Direct Fo	rces: Struct	ure 1 (N-S Dire	ection)	Seismi	ic Direct Fo	rces: Struct	ure 2 (N-S Dire	ection)
	14	-	514	Force			-		Force
3rd Floor	KI.	Р	2K	(Kips)	3rd Floor	ĸ	Р	2Ki	(Kips)
1	769.23	418.00	1538.46	209.00	3	833.33	378.00	1602.56	196.5
2	769.23	418.00	1538.46	209.00	4	769.23	378.00	1602.56	181.4
			Total	418.00				Total	378.0
Seism	ic Direct Fo	rces: Structi	ure 1 (E-W Dire	ection)	Seismi	c Direct Fo	rces: Structi	ure 2 (E-W Dire	ection)
3rd Floor	K	P	ΣK	Force	3rd Floor	K,	Р	ΣK	Force
	005.00	440.00	4004.07	(Kips)	-	005.00	070.00	4000.00	(Kips
A	620.00	418.00	1291.07	202.20		714.20	378.00	1339.29	201.6
0	000.07	410.00	Total	418.00		7 14.20	070.00	Total	378.0
			Total	410.00	1			TOLAT	070.0
Seism	nic Direct Fo	rces: Struct	ure 1 (N-S Dire	ection)	Seismi	ic Direct Fo	rces: Struct	ure 2 (N-S Dire	ection)
2nd Floor	К	P	5K.	Force	2nd Floor	ĸ	P	ΣK.	Force
2110111001			214	(Kips)	21 M T TOOT	.1		2.4	(Kips)
1	1250.00	304.00	2361.11	160.94	3	1250.00	277.00	2361.11	146.6
2	1111.11	304.00	2361.11	143.06	4	1111.11	277.00	2361.11	130.3
Seism	ic Direct Fo	rees' Struct	I otal	ection)	Seismi	c Direct Fo	rees: Structu	I Otal	277.0
Ocidin	Directio	CCS. Ollool		Force	Celoni	C Direct I O	000. 011001	ale 2 (E-W Date	Force
2nd Floor	K	Р	ΣK	(Kips)	2nd Floor	K,	Р	ΣKi	(Kips)
A	909.09	304.00	1909.09	144.76	С	1000.00	277.00	2111.11	131.2
В	1000.00	304.00	1909.09	159.24	D	1111.11	277.00	2111.11	145.7
		·	Total	304.00				Total	277.0
Onlare	Direct Fo	Of the set	1/1100	and a set		- Disc et Es	Character and	0 (N 0 D)	-
Seisii	IC Direct Po	ices. Struct	ure I (IN-S DIR	Force	Seisin	IC Direct FO	ices, Struct	ule 2 (N-5 Dile	Force
1st Floor	K,	P	ΣK	(Kips)	1st Floor	K,	Р	ΣK	(Kips)
1	2000.00	195.00	4000.00	97.50	3	2500.00	166.00	4500.00	92.22
2	2000.00	195.00	4000.00	97.50	4	2000.00	166.00	4500.00	73.78
			Total	195.00				Total	166.0
Seism	ic Direct Fo	rces: Structi	ure 1 (E-W Dire	ection)	Seismi	c Direct Fo	rces: Structi	ure 2 (E-W Dire	ection)
1st Floor	K,	P	ΣKi	Force	1st Floor	K,	P	ΣKi	Force
^	1666 67	105.00	2222.22	(Kips)	C	1666 67	166.00	2666 67	(KIDS
B	1666.67	195.00	3333.33	97.50		2000.00	166.00	3666.67	00.55
0	1000.07	133.00	Total	195.00		2000.00	100.00	Total	166.0
					.				
Seism	nic Direct Fo	rces: Struct	ure 1 (N-S Dire	ection)	Seismi	ic Direct Fo	rces: Struct	ure 2 (N-S Dire	ection)
Mezzanine	K	P	ΣK.	Force	Mezzanine	K,	Р	ΣΚ.	Force
				(Kips)	morecomme	10000		10000	(Kips
1	10000.00	86.00	20000.00	43.00	3	10000.00	84.00	15000.00	56.00
2	10000.00	86.00	20000.00	43.00	4	5000.00	84.00	15000.00	28.00
Seism	ic Direct Fo	rces Struct	Ire 1 (E-W Dire	ection)	Seismi	c Direct For	ces Struct	Ire 2 (E-W Dire	ection)
U	K	D. Chool	EK.	Force	Selarin	V	C. C. G. GOL	EL CONCENT	Force
Mezzanine	K,	Р	2K	(Kips)	Mezzanine	K,	P	214	(Kips)
A	5000.00	86.00	10000.00	43.00	С	5000.00	84.00	10000.00	42.00
В	5000.00	86.00	10000.00	43.00	D	5000.00	84.00	10000.00	42.00
			Total	86.00				Total	84.00

Calculation 8: Direct Forces Due to Seismic on Both Structures

Final Report: Signature Expression

April 7, 2009

	555.56	-87.23	4227263	-0.279	0	555.56	-87.23	4227263	-1.613
		Total	17326141	0.00			Total	17326141	00.0
Forces B	v Torsional	Moment: N-5	S Direction (Str	ructure 2)	Forces By	Torsional N	Moment E-V	V Direction (St	ructure 2)
3rd Floor	×	ď	Kdi ²	Force (Kips)	3rd Floor	¥	σ	Kdi ²	Force (Kips)
e	833.33	-78,80	5174533	-1,518	0	833,33	-78.80	5174533	-6.891
4	769.23	85.37	5606788	1.518	4	769.23	85.37	5605788	6.891
U	625.00	100.80	6350400	1.456	U	625.00	100.80	6350400	6.611
٥	714.29	-88.20	5556600	-1.458	0	714.29	-88.20	5556800	-6.611
		Total	22687322	0.00			Total	22687322	0.00
Forces B	v Torsional	Moment N-	S Direction (Str	ructure 2)	Forces By	Torsional N	Noment: E-V	V Direction (St	ructure 2)
2nd Floor	×	d,	Kd ²	Force (Kips)	2nd Floor	¥	q	Kd ²	Force (Kips)
0	1250,00	-77.26	7461385	-4.613	en	1250.00	-77.26	7461385	-16.995
4	1111.11	86.91	8392030	4.612	4	1111.11	86.91	8392030	16.993
0	1000.00	99.47	9894281	4.751	0	1000.00	99.47	9894281	17.504
0	1111.11	-89.53	8906245	-4.751	0	1111.11	-89.53	8906245	-17,506
		Total	34653940	0.00			Total	34653940	0.00
Forces B	v Torsional	Moment: N-	S Direction (Str	ructure 2)	Forces By	Torsional N	Moment: E-V	V Direction (St	ructure 2)
1st Floor	K	ď	Kd ²	Force (Kips)	1st Floor	¥	đ	Kd ²	Force (Kips)
3	2500.00	-72.96	13307904	-15.487	0	2500.00	-72.96	13307904	-33.683
4	2000.00	91.21	16637434	15.488	4	2000.00	91.21	16637434	33,685
0	1666.67	103.09	17712580	14.589	o	1666.67	103.09	17712580	31.728
٥	2000.00	-85.91	14761056	-14.589	Q	2000.00	-85.91	14761056	-31.729
		Total	62418974	0.00			Total	62418974	0.00
Forces B	v Torsional	Moment: N-5	S Direction (Str	ructure 2)	Forces By	Torsional N	Moment: E-V	V Direction (St	ructure 2)
Mezzanine	¥	ď	Kd ²	Force (Kips)	Mezzanine	¥	đ	Kd, ²	Force (Kips)
0	10000.00	-54.72	29942784	-10.421	60	10000.00	-54.72	29942784	-71.527
4	5000.00	109.45	59893229	10.421	4	5000.00	109.45	59893229	71.532
0	5000.00	94.50	44651250	8.998	0	5000.00	94.50	44651250	61.763
		10.0	424.24	0000	c	00000	01.10	00010011	10000

		_	-	_	_		$1 \ge 1$	_	_	-	_	-		>	_		-	-	ł
Forces t	2nd Floor	6	4	0	0	a s	Forces B	1st Floor	6	4	0	0		Forces B	Mezzanine	6	4	U	
ucture 1)	Force (Kips)	5.135	-5.135	-4.447	4.447	0.00	ucture 1)	Force (Kips)	0.000	0.000	0.000	0.000	0.00	ucture 1)	Force (Kips)	0.000	0.000	0.000	
/ Direction (Stru	Kd ²	8640325	9719845	8910000	8100000	35370170	/Direction (Stru	Kd ²	15607911	15604378	14883750	14883750	60979789	/ Direction (Stru	Kd ²	78039556	78021889	44651250	A REAL PROPERTY AND INC.
foment: E-M	d,	-83.14	83.53	00.66	-90.00	Total	foment: E-M	ď	-88.34	88.33	94.50	-94.50	Total	foment E-M	ď	-88.34	88.33	94.50	
Torsional N	¥	1250.00	1111.11	909.006	1000.00		Torsional N	×	2000.00	2000.00	1666.67	1666.67		Torsional N	¥	10000.00	10000.00	5000.00	100000
Forces By	2nd Floor	1	2	A	В		Forces By	1st Floor	1	2	A	В		Forces By	Mezzanine	1	2	A	

(Kips)	0.296	-0.296	-0.251	0.251	0.00	ructure 1)	Force (Kips)	1.593
Kd ²	4590562	4590562	4250405	4056805	17488334	Direction (St	Kdi ²	6003043
ď	-88.34	88.34	96.70	-92.30	Total	foment E-M	ď	-88.34
¥	588.24	588.24	454.55	476.19		Torsional N	¥	769.23
Roof	1	2	A	8		Forces By	3rd Floor	+

Force	(Kips)	0.00	00.00	00.00	00:00	0.00	tructure 1)	Force	(Kips)	0.000	0.000	0.000	00000	0.00	tructure 1)	Force (Kins)	-5.626	5.626	4.872	-4.872	0.00	tructure 1)	Force (Kins)	0.000	0:000	0.000	0.000	0.00	tructure 1)	Force	00000	00000	0.000	1 1 1 1
Kd²	1000	4590562	4590562	4250405	4056805	17488334	S Direction (S)	NA ²	in v	6003043	6001684	5947502	5575402	23527630	S Direction (St	K _d ²	8640325	9719845	8910000	8100000	35370170	S Direction (St	Kd ²	15607911	15604378	14883750	14883750	60979789	S Direction (S	Kd ²	78039556	78021889	44651250	
q		-88.34	88.34	96,70	-92.30	Total	Moment: N-5	٢	5	-88.34	88.33	97.55	-91.45	Total	Noment N-S	q	-83.14	93.53	89.00	-90.00	Total	Noment: N-S	ą	-88.34	88.33	94.50	-94.50	Total	Noment: N-S	q	-88,34	88.33	94.50	
¥		588.24	588.24	454,55	476.19		Torsional M	ч	e	769.23	769.23	625.00	666.67		/ Torsional N	¥	1250.00	1111.11	909.09	1000.00		/ Torsional N	¥	2000.00	2000.00	1666.67	1666.67		/ Torsional N	¥	10000.00	10000.00	5000.00	
Roof	1000	1	2	A	8		Forces By	3rd Elnor	our row	1	2	A	8		Forces By	2nd Floor	-	2	A	8		Forces By	1st Floor	-	2	A	8		Forces By	Mezzanine	-	2	A	

Calculation 9: Torsional Forces on both Structures Due to Wind

Final Report: Signature Expression

April 7, 2009

1	i cincentre et		interesting and a second	A CONTRACTOR		dis number of					in a success	
	Force (Kips)	Roof	×	ď	Kdi ²	Force (Kips)	Roof	¥	đ	Kd ²	Force (Kips)	
62	2.220	en	625.00	-79,60	3960100	-2.143	en	625,00	-79.60	3960100	6.262	
82	-2.220	4	588.24	84.57	4206810	2.142	4	588.24	84.57	4206810	-6.261	
05	-1.878	U	476.19	101.77	4931968	2.087	U	476.19	101.77	4931968	-6.100	
05	1.878	0	555.56	-87.23	4227263	-2.087	0	555.56	-87.23	4227263	6.100	
34	00:00			Total	17326141	0.00			Total	17326141	0000	
n (St	tructure 1)	Forces B	y Torsional	Moment N-	S Direction (St	ructure 2)	Forces E	By Torsional N	Noment: E-V	V Direction (St	ructure 2)	
	Force (Kips)	3rd Floor	×	ġ	Kd ²	Force (Kips)	3rd Floor	¥	q	Kd ²	Force (Kips)	
43	3,680	0	833,33	-78.80	5174533	-3.592	0	833.33	-78,80	5174533	6.893	
84	-3.680	4	769.23	85.37	5605788	3.592	4	769.23	85.37	5605788	-6.893	
02	-3.302	U	625.00	100.80	6350400	3.446	U	625.00	100.80	6350400	-6.613	
02	3.302	0	714.29	-88.20	5556600	-3.446	0	714.29	-88.20	5556600	6.613	
8	0.00			Total	22687322	0.00			Total	22687322	00.00	
n (St	Cructure 1)	Forces B	v Torsional	Moment: N-	S Direction (St	ructure 2)	Forces	By Torsional h	Moment E-V	V Direction (St	ructure 2)	
	Force	2nd Floor	×	q	Kd ²	Force	2nd Floor	×	q	Kd ²	Force	
-	(Kips)		1000 00	100 AVA		(Kips)		100000	00 50		(Kips)	
S	4.UTB	2	1250.00	07.11-	/401300	-3.121	~	00.0621	-11.20	/401365	3.639	
42	4.019	4	1111.11	86.91	8392030	3.727	4	1111.11	86.91	8392030	-3.839	
8	-3.481	U	1000.00	99.47	9894281	3.839	0	1000.00	99.47	9894281	-3.965	
8	3.481		1111.11	-89.53	8906245	-3,839		1111.11	-89.53	8906245	3.955	
20	0.00			Total	34653940	0.00			Total	34653940	0.00	
0/ 10	All and the	Career D	I Tamiana	Manada M.	Direction (O	C washing	Locate L	Di Tacciacal I	Access E 1	M Disation /04	C united D	
n) L	ducture 1)	FOICES D	V LOISIONAL	NOTHERLE N-	DIFECTION (St	ructure 2)	FOICES D	DV LOISIONAL I	VIOMENL E-V	V Direction (St	ructure z)	
	Force (Kips)	1st Floor	x	ğ	K,d, ²	Force (Kips)	1st Floor	¥	đ	Kd ²	Force (Kips)	
111	0.000	3	2500.00	-72.96	13307904	-4.424	3	2500.00	-72.96	13307904	4.167	
878	0.000	4	2000.00	91.21	16637434	4.424	4	2000.00	91.21	16637434	-4.168	
150	0.000	U	1666.67	103.09	17712580	4.167	U	1666.67	103.09	17712580	-3.926	
750	0.000	0	2000.00	-85.91	14761056	-4.168	a	2000.00	-85.91	14761056	3.926	
88	00:00			Total	62418974	0.00			Total	62418974	000	
0/ 00	1) with the first of the	Corror D	Tampan	Manant- N	Diraction (Ct	C without	Conne D	Di Taminani I	Anmat E V	A Diraction (Ct.	A contract of	
0 10	ancine i)	LOICES D	V I DISIONAL	MOLDERLL IN-	o Direction (St	Lucinie 2)	LOICES	DV LOISIONAL P	VIOLINEILL E-V	A Direction (St	(7 ainoni	
	Force (Kips)	Mezzanine	×	ď	Kd ²	Force (Kips)	Mezzanin	e K	đ	Kd ²	Force (Kips)	
200	0.000	0	10000.00	-54.72	29942784	-0.927	e	10000.00	-54.72	29942784	0.000	
389	0.000	4	5000.00	109.45	59893229	0.927	4	5000.00	109.45	59893229	0.000	
520	0.000	C	5000.00	94.50	44651250	0.800	0	5000.00	94.50	44651250	0.000	
550	0.000	0	5000.00	-94.50	44651250	-0.800	0	5000.00	-94.50	44651250	0.000	
945	00.00			Total	179138513	0.00			Total	179138513	0.00	

	ructure	For (Kip	3.6	-3.6	-3.3	3.3(0.0	ructure	For (Kip	4.0	-4.0	-3.4	3.4	0.0	nichure	(Kip	0.0	0.0	0.0	0.0	0.0	ructure	For (Kip	0.0	0.0	0.0	0.0	ò
	V Direction (Str	Kdi ²	6003043	6001684	5947502	5575402	23527630	V Direction (Str	Kd ²	8640325	9719845	8910000	8100000	35370170	V Direction (Str	Kd ²	15607911	15604378	14883750	14883750	60979789	V Direction (Str	Kd ²	78039556	78021889	44651250	44651250	1 AKCOCOCAK
	Noment E-V	ď	-88,34	88.33	97.55	-91.45	Total	Anment E-V	ġ	-83.14	93.53	00.06	-90.00	Total	Anment E-V	ġ	-88.34	88.33	94.50	-94.50	Total	Noment E-V	ġ	-88.34	88,33	94.50	-94.50	Tatel
-	Torsional N	¥	769.23	769.23	625.00	666.67		Torsional N	¥	1250.00	1111.11	60.606	1000.00		Torsional N	×	2000.00	2000.00	1666.67	1666.67		Torsional N	×	10000.00	10000.00	5000.00	5000.00	
	Forces By	3rd Floor	1	2	A	8		Forces Bv	2nd Floor	1	2	A	8		Forces Bu	1st Floor	-	2	A	8		Forces Bv	Mezzanine	1	2	A	8	
								0.77							55													
	ucture 1)	Force (Kips)	0.000	0.000	0.000	0.000	00.00	ucture 1)	Force (Kips)	-4.641	4.641	4.019	-4.019	0.00	scture 1)	Force (Kips)	0.000	0.000	0.000	0.000	0.00	ucture 1)	Force (Kips)	0.000	0.000	0.000	0.000	200
	on (Str		043	84	02	02	630	on (Str		\$25	345	00	00	170	on (Str	~	911	378	750	750	789	on (Str		556	889	250	250	SAE 1

0.000		ALC: NUMBER OF	In the second of	(I AINTAN
Broof	×	τ	242	Force
		E.	Int	(Kips)
1	588.24	-88.34	4590662	0.000
2	588.24	88.34	4590662	0.000
A	454.55	96.70	4250405	0.000
8	476.19	-92.30	4056805	0.000
		Total	17488334	0.00
Forces By	y Torsional I	Moment: N-:	S Direction (St.	ructure 1)
3rd Floor	×	p	Kd ²	Force
	100.00	1000		(Kips)
- 0	100.00	-00.34	0000000	0.000
2	109.23	88.33	6001684	0,000
A	625.00	97.55	5947502	0.000
8	666.67	-91.45	5675402	0.000
		Total	23527630	00.00
			000	
Forces B)	y Torsional	Moment: N-	S Direction (St	ructure 1)
2nd Floor	¥	ŋ	Kd ²	Force (Kips)
1	1250.00	-83.14	8640325	-4.641
2	1111.11	93.53	9719845	4.641
A	909.00	99,00	8910000	4.019
8	1000.00	-90.00	8100000	-4.019
		Total	35370170	0.00
Forces B	y Torsional I	Moment: N-	S Direction (Str	ructure 1)
1st Floor	×	p	Kd ²	Force
				(Kips)
-	2000.000	-88.34	116/0991	0.000
2	2000.00	88.33	15604378	0.000
<	1666.67	94.50	14883750	0.000
8	1666.67	-94.50	14883750	0.000
		Total	60979789	0.00
		0		
Forces B	y Torsional I	Moment: N-:	S Direction (St.	ructure 1)
Mezzanine	¥	q	Kd ²	Force (Kins)
1	10000.00	-88.34	78039556	0.000
2	10000.00	88.33	78021889	0.000
A	5000.00	94.50	44651250	0.000

Calculation 10: Torsional Forces on both Structures Due to Seismic

Final Report: Signature Expression

		The second secon	A LOUD TO LOUD
Roof	Direct Horce	I orsional Force	Net Force
	(Nps)	(Nps)	(sdv)
3		-1.66	1.66
4		1.66	1.66
0	21.00	1.61	22.61
0	24.50	-1.61	26.11
Net Force	On Frames (E	E-W Direction): St	ructure 2
3rd Floor	Direct Force	Torsional Force	Net Force
	(Kips)	(Kips)	(Kips)
3	a de la como de	-6.89	6.89
4		6.89	6.89
o	84.51	6.61	91.12
٥	96.59	-6.61	103.20
Net Force	On Frames (E	E-W Direction): St	ructure 2
2nd Floor	Direct Force (Kins)	Torsional Force (Kins)	Net Force (Kins)
0	-	-16.99	16.99
4	-	16.99	16.99
C	184.22	17.50	201.72
0	204.68	-17.51	222.19
Net Force	On Frames (E	E-W Direction): St	ructure 2
1st Floor	Direct Force (Kins)	Torsional Force (Kins)	Net Force (Kins)
0	-	-33.68	33.68
4	•	33.69	33.69
0	299.68	31.73	331.41
0	359.62	-31.73	391.35
Net Force	On Frames (E	E-W Direction): St	ructure 2
Mezzanine	Direct Force	Torsional Force	Net Force
	(Kips)	(Kips)	(Kips)
3		-71.53	71.53
4	-	71.53	71.53
C	535.80	61.76	597.56
0	535,80	-61.76	597.56

ucture 2	Net For (Kips)	84.56	78.17	1.46	1.46	ucture 2	Net For (Kips)	186.1	165.9	4.75	4.75	ucture 2	Net For
N-S Lifection). Sti	Torsional Force (Kips)	-1.52	1.52	1.46	-1.46	N-S Direction): Str	Torsional Force (Kips)	-4.61	4.61	4.75	-4.75	N-S Direction): Str	Torsional Force
CULFTATTES (Direct Force (Kips)	83.04	76.66	a.		on Frames (Direct Force (Kips)	181.48	161.32	×	- 4 - N	e On Frames (I	Direct Force
INEL FORCE	3rd Floor	e	4	υ	0	Net Force	2nd Floor	9	4	o	٥	Net Force	1st Floor

(Kig	338	273	14.	14.	ructure	Net F (Kir	701	386	61.
(Kips)	-15,49	15.49	14.59	-14,59	N-S Direction): Str	Torsional Force (Kips)	-71.53	71.53	61.76
(Kips)	322.83	258.27			e On Frames (Direct Force (Kips)	629.53	314.77	
1st Floor	3	4	0	٥	Net Force	Mezzanine	3	4	0

Net Force	: On Frames (E	E-W Direction): St	ructure 1
Dane	Direct Force	Torsional Force	Net Force
KOOI	(Kips)	(Kips)	(Kips)
		0.30	0.30
2		-0.30	0.30
A	22.17	-0.25	22.42
8	23.23	0.25	23.48
Net Force	on Frames (E	E-W Direction): St	ructure 1
3rd Floor	Direct Force (Kins)	Torsional Force (Kins)	Net Force (Kins)
-		1.59	1.59
2		-1.59	1.59
A	87.53	-1.43	88.96
8	93.37	1.43	94.80
Net Force	e On Frames (E	E-W Direction): St	ructure 1
Ind Floor	Direct Force	Torsional Force	Net Force
-	Inderi	5.14	5.14
2		-5.14	5.14
A	184.95	-4,45	189.40
8	203.45	4.45	207.89
Net Force	: On Frames (E	E-W Direction): St	ructure 1
tet Elonr	Direct Force	Torsional Force	Net Force
INI INI	(Kips)	(Kips)	(Kips)
-		00.00	00.00
2	ALC: NO.	0.00	00.00
A	329.15	0.00	329.15
В	329.15	0.00	329.15
Net Force	On Frames (E	E-W Direction): St	ructure 1
aninezzal	Direct Force	Torsional Force	Net Force
	(Kips)	(Kips)	(Kips)
1		0.00	0.00
2		0.00	0.00
A	535.00	0.00	535.00
8	535.00	00.00	535.00

	On Frames (E	-W Direction): St	ructure 1
-	Direct Force (Kips)	Torsional Force (Kips)	Net Force (Kips)
		0.30	0:30
		-0.30	0:30
	22.17	-0.25	22.42
	23.23	0.25	23.48
	On Frames (E	-W Direction): St	ructure 1
-	Direct Force	Torsional Force	Net Force
	(Kips)	(Kips)	(Kips)
		1.59	1.59

- Per	Direct Force	Torsional Force	Net
į	(Kips)	(Kips)	Ŧ.
_		0.30	0
2		-0.30	0
-	22.17	-0.25	5
	23.23	0.25	2
	and the second second	Allowed and an and	
Force	: On Frames (E	E-W Direction): St	ructu
Floor	Direct Force	Torsional Force	Net
NY NY	(Kips)	(Kips)	×.
1		1.59	-

		0.00	
A	22.17	-0.25	3
8	23.23	0.25	5
	ANTENNA IN	Alesse accertain	Ľ
t Force	: On Frames (E	E-W Direction): St	ructu
Floor	Direct Force (Kins)	Torsional Force (Kins)	Net
-		1.59	-
2		-1.59	1
A	87.53	-1.43	æ
	93.37	1.43	6

			ž	Z		-		151	Ž	Z
\$1.0°	-4.45	4.45	-W Direction): St	Torsional Force (Kips)	00.0	0.00	0.00	0.00	-W Direction): St	Torsional Force
	184.95	203.45	: On Frames (E	Direct Force (Kips)	-	1.000	329.15	329.15	On Frames (E	Direct Force
A N	A	8	Net Force	1st Floor	1	2	A	8	Net Force	and the second se
	_	-	· -			_		_	_	

0.00	00:00	E-W Direction): St	Torsional Force (Kips)	0.00	00.0	00.00	0.00
329.15	329.15	On Frames (E	Direct Force (Kips)		1.00	535.00	535.00
A	8	Net Force	Mezzanine	1	2	A	8

Net Force	e On Frames ()	V-S Direction): St	ructure 1
Roof	Direct Force (Kins)	Torsional Force (Kins)	Net Force (Kins)
+	21.55	0.00	21.55
2	21.55	00.0	21.55
A		0.00	0.00
в	(*) (*)	000	00.0
		The second se	
Net Force	e On Frames (1	V-S Direction): St	ructure 1
3rd Floor	Direct Force	Torsional Force	Net Force
001100	(Kips)	(Kips)	(Kips)
1	85.80	0.00	85.80
2	85.80	0.00	85.80
A		00.0	00.00
В	1. 1. A.	0.00	00.00
Net Force	e On Frames (1	V-S Direction): St	ructure 1
2nd Floor	Direct Force	Torsional Force	Net Force
	(Kips)	(Kips)	(Kips)
1	195.09	-5.63	200.71
2	173.41	5.63	179.04
A	1	4.87	4.87
В		-4.87	4.87
	11		
Net Force	e On Frames (1	V-S Direction): Sti	ructure 1
1st Floor	Direct Force	Torsional Force	Net Force
1001 1101	(Kips)	(Kips)	(Kips)
1	312.30	0.00	312.30
2	312.30	0.00	312.30
A	1.00	0.00	0.00
В	(•);	0.00	00.00
Net Force	e On Frames (1	V-S Direction): St	ructure 1
Mezzanine	Direct Force	Torsional Force	Net Force
	(Kips)	(Kips)	(Kips)
1	507.50	0.00	507.50
2	507.50	0.00	507.50
A	200	0.00	00.00
0		0000	0000

Calculation 11: Net Force on Both Structures Due to Wind

Final Report: Signature Expression

													the second se				1 Contractor 100	1 5									-		
07.0	6.26	144.56	167.64		ructure 2	Net Force	(Kips)	6.89	6.89	183.01	208.21	ructure 2	Net Force	(Kips)	3.84	135.17	149.74		ructure 2	Net Force (Kips)	4.17	4,17	79.38	94.47		ructure 2	Net Force	(Kips)	000
07.0	-6.26	-6,10	6.10		-W Direction): St	Torsional Force	(Kips)	6.89	-6.89	-6.61	6.61	W Direction): St	Torsional Force	(Kips)	-3.84	-3.95	3.95		-W Direction): St	Torsional Force (Kips)	4.17	-4.17	-3.93	3.93		-W Direction): St	Torsional Force	(Kips)	0000
,		138.46	161.54		On Frames (E	Direct Force	(Kips)			176.40	201.60	On Frames (F	Direct Force	(Kips)		131.21	145.79		On Frames (E	Direct Force (Kips)		1	75.45	90.55		On Frames (E	Direct Force	(Kips)	
	4	0	0		Net Force	3rd Floor		3	4	0	٥	Net Force	2nd Floor	5	4	0	٥		Net Force	1st Floor	3	4	o	٥		Net Force	Mazzanine		e
2				1																									
2	.60	60	60		92	orce	(SC)	.15	03	12	45	2	orce	(SC	08	34	84		9.2	orce ps)	65	20	17	17	1	62	orce	(so	03
C 60'0CI 51'7-	2.14 147.60	2.09 2.09	-2.09 2.09		(irection): Structure 2	ional Force Net Force	(Kips) (Kips)	-3.59 200.15	3.59 185.03	3.45 3.45	-3.45 3.45	litection): Structure 2	ional Force Net Force	(Kips) (Kips)	3.73 134.08	3.84 3.84	-3.84 3.84	0 1 10	lirection): Structure 2	ional Force Net Force (Kips) (Kips)	-4.42 96.65	4.42 78.20	4.17 4.17	-4.17 4.17]	irection): Structure 2	ional Force Net Force	(Kips) (Kips)	-002 FR 02
C 100.001 41.2- 00.001	145.45 2.14 147.60	- 2.09 2.09	2.09 2.09		On Frames (N-S Direction): Structure 2	Direct Force Torsional Force Net Force	(Kips) (Kips) (Kips)	196.56 -3.59 200.15	181,44 3.59 185,03	- 3.45 3.45	3.45 3.45	On Frames (N-S Direction): Structure 2	Direct Force Torsional Force Net Force	(Kips) (Kips) (Kips) 146.65 _3.73 150.37	130.35 3.73 134.08	- 3.84 3.84	3.84 3.84		On Frames (N-S Direction): Structure 2	(Kips) (Kips) (Kips) (Kips)	92.22 -4.42 96.65	73.78 4.42 78.20	- 4.17 4.17	4,17 - 4,17	-	On Frames (N-S Direction): Structure 2	Direct Force Torsional Force Net Force	(Kips) (Kips) (Kips)	58 M - 002 58 02

(Kips)	3.68	3.68	205.56	219.04	ructure 1	Net Force	(Kips)	4.02	4.02	148.24	162.72	ructure 1	Net Force	(Kips)	00.00	00.00	97.50	97.50	ructure 1	Net Force	(Kips)	0.00	00:00	43.00	43.00	
Torsional Force (Kips)	3.68	-3.68	-3.30	3.30	E-W Direction): St	Torsional Force	(Kips)	4.02	-4.02	-3.48	3.48	-W Direction): St	Torsional Force	(Kips)	0.00	00.0	0.00	0.00	E-W Direction): St	Torsional Force	(Kips)	0.00	0.00	0.00	00.00	
Direct Force (Kips)		S	202.26	215.74	On Frames (E	Direct Force	(Kips)			144.76	159.24	On Frames (E	Direct Force	(Kips)			97.50	97.50	On Frames (E	Direct Force	(Kips)		14	43.00	43.00	
3rd Floor	+	2	A	8	Net Force	2nd Floor		1	2	A	8	Net Force	And Plant	IST LIGO	1	2	A	В	Net Force	Mezzahine	ALL CONTRACTOR	1	2	A	в	

Net Force	e On Frames (1	N-S Direction): St	ructure 1
Doof	Direct Force	Torsional Force	Net Force
inor.	(Kips)	(Kips)	(Kips)
	170.00	0.00	170.00
2	170.00	000	170.00
A		0.00	00.00
8	-	000	0.00
Net Force	e On Frames (1	V-S Direction): St	ructure 1
3rd Floor	Direct Force	Torsional Force	Net Force
	(Kips)	(Kips)	(Kips)
F	209.00	0.00	209.00
2	209.00	0.00	209.00
A		0.00	0.00
8	1	000	00:00
Net Force	e On Frames (h	V-S Direction): St	ructure 1
and Elnor	Direct Force	Torsional Force	Net Force
	(Kips)	(Kips)	(Kips)
1	160.94	-4.64	165.58
2	143.06	4.64	147.70
A		4.02	4.02
8		-4.02	4.02
Net Force	e On Frames (1	V-S Direction): St	ructure 1
1st Floor	Direct Force	Torsional Force	Net Force
1001 1001	(Kips)	(Kips)	(Kips)
1	97.50	0.00	97.50
2	97.50	0.00	97.50
A		0.00	0.00
8		0.00	00.00
Net Force	e On Frames (1	V-S Direction): St	ructure 1
Aezzanine	Direct Force	Torsional Force	Net Force
	(KIPS)	(Kips)	(KIPS)
-	43.00	0.00	43.00
2	43.00	0.00	43.00
A		0.00	0.00
1			

Calculation 12: Net Force on Both Structures Due to Seismic

April 7, 2009

APPENDIX G: DRIFT RESULTS

Final Report: Signature Expression

April 7, 2009

			Cor	ntrolling V	Wind Drift: Fram	ne 1			
Story	Story Height (ft)	Story Drift (in)	AI	lowable S D _{wind} =	tory Drift (in) H/400	Total Drift (in)	A	lowable T D _{wind} =	otal Drift (in) H/400
Roof	11.500	0.041	<	0.345	Acceptable	0.509	<	1.94	Acceptable
3rd	11.500	0.049	<	0.345	Acceptable	0.468	<	1.595	Acceptable
2nd	11.500	0.140	<	0.345	Acceptable	0.419	<	1.25	Acceptable
1st	0.150	<	0.368	Acceptable	0.278	<	0.905	Acceptable	
Mezzanine	17.917	0.129	<	0.538	Acceptable	0.129	<	0.5375	Acceptable
		-	Cor	ntrolling V	Vind Drift: Fram	ne 2	_		
Story	Story Height (ft)	Story Drift (in)	A	lowable S D _{wind} =	tory Drift (in) H/400	Total Drift (in)	A	lowable T D _{wind} =	otal Drift (in) H/400
Roof	11.500	0.042	<	0.345	Acceptable	0.514	<	1.94	Acceptable
			_						

0.538 Accepta

0.13

		_	Cor	trolling W	/ind Drift: Fram	e A			
Story	Story Height (ft)	Story Drift (in)	AJ	lowable S D _{wind} =	tory Drift (in) H/400	Total Drift (in)	1	Allowable D _{wind}	Total Drift (in) = H/400
Roof	11.500	0.079	<	0.345	Acceptable	0.681	<	1.94	Acceptable
3rd	11.500	0.094	<	0.345	Acceptable	0.602	<	1.595	Acceptable
2nd	11.500	0.161	<	0.345	Acceptable	0.508	<	1.25	Acceptable
1st	12.250	0.161	<	0.368	Acceptable	0.347	<	0.905	Acceptable
Mezzanine	17.917	0.186	<	0.538	Acceptable	0.186	<	0.5375	Acceptable
			Cor	ntrolling W	/ind Drift: Fram	e B			_
Story	Story Height (ft)	Story Drift (in)	AJ	lowable S D _{wint} =	tory Drift (in) H/400	Total Drift (in)	1	Allowable D _{wind}	Total Drift (in) = H/400
Roof	Roof 11.500 0.075 < 0.345 Accep					0.674	<	1.94	Acceptable
3rd	11.500	0.089	089 < 0.345 Acceptable				<	1.595	Acceptable
2nd 11.500 0.161 <				0.345	Acceptable	0.510	<	1.25	Acceptable
1st	12.250	0.160	<	0.368	Acceptable	0.349	<	0.905	Acceptable
Mampaning	17.017	0.100		0.520	Assessable	0.100	1	0.5275	Assessments

Table 1: Drift Results for Structure 1 Due to Wind

			_				_						_				_		
			Cor	ntrolling V	Vind Drift: Fram	ne 3							Con	trolling W	find Drift: Fram	eC			
Story	Story Height (ft)	Story Drift (in)	AI	lowable S D _{wind} =	tory Drift (in) H/400	Total Drift (in)	A	lowable T D _{wind} =	otal Drift (in) H/400	Story	Story Height (ft)	Story Drift (in)	Al	lowable S D _{wind} =	tory Drift (in) H/400	Total Drift (in)	A	llowable D _{wind}	Fotal Drift (in) = H/400
Roof	11.500	0.036	<	0.345	Acceptable	0.489	<	1.94	Acceptable	Roof	11.500	0.075	<	0.345	Acceptable	0.681	<	1.94	Acceptable
3rd	11.500	0.045	<	0.345	Acceptable	0,453	<	1.595	Acceptable	3rd	11,500	0.090	<	0.345	Acceptable	0.606	<	1.595	Acceptable
2nd	11,500	0.135	<	0.345	Acceptable	0.408	<	1.25	Acceptable	2nd	11.500	0.161	<	0.345	Acceptable	0.517	<	1.25	Acceptable
1st	12.250	0.146	<	0.368	Acceptable	0.273	<	0.905	Acceptable	1st	12.250	0.160	<	0.368	Acceptable	0.356	<	0.905	Acceptable
Mezzanine	17.917	0.127	<	0.538	Acceptable	0.127	<	0.5375	Acceptable	Mezzanine	17.917	0.196	<	0.538	Acceptable	0.196	<	0.5375	Acceptable
2																			
			Cor	ntrolling V	Vind Drift: Fram	ne 4							Con	trolling W	find Drift: Fram	eD			
Story	Story Height (ft)	Story Drift (in)	AJ	lowable S D _{wind} =	tory Drift (in) H/400	Total Drift (in)	A	Allowable Total Drift (in) D _{wind} = H/400		Story	Story Height (ft)	Story Drift (in)	Al	lowable S	tory Drift (in) H/400	Total Drift (in)	P	llowable ' D _{wind}	Fotal Drift (in) = H/400
Roof	11.500	0.034	<	0.345	Acceptable	0.477	<	1.94	Acceptable	Roof	11.500	0.060	<	0.345	Acceptable	0.677	<	1.94	Acceptable
3rd	11.500	0.041	<	0.345	Acceptable	0.443	<	1.595	Acceptable	3rd	11.500	0.079	<	0.345	Acceptable	0.617	<	1,595	Acceptable
2nd	11.500	0.119	<	0.345	Acceptable	0.402	<	1.25	Acceptable	2nd	11.500	0.166	<	0.345	Acceptable	0.538	<	1.25	Acceptable
1st	12.250	0.122	<	0.368	Acceptable	0.282	<	0.905	Acceptable	1st	12.250	0.168	<	0.368	Acceptable	0.372	<	0.905	Acceptable
Mezzanine	17.917	0.160	<	0.538	Acceptable	0.160	<	0.5375	Acceptable	Mezzanine	17.917	0.204	<	0.538	Acceptable	0.204	<	0.5375	Acceptable

Table 2: Drift Results for Structure 2 Due to Wind

Story	Story Height (ft)	Story Drift (in)	AJ	lowable S D _{SEISMIC} =	tory Drift (in) = 0.020h _{sx}	Total Drift (in)	AJ	lowable S D _{SEISMIC} =	tory Drift (in) = 0.020h _{sx}
Roof	11,500	0.129	<	0.230	Acceptable	0.738	<	1.293	Acceptable
3rd	11.500	0.140	<	0.230	Acceptable	0.609	<	1.063	Acceptable
2nd	11.500	0.201	<	0.230	Acceptable	0.469	<	0.833	Acceptable
1st	12.250	0.189	<	0.245	Acceptable	0.269	<	0.603	Acceptable
Mezzanine	17.917	0.080	<	0.358	Acceptable	0.080	<	0.358	Acceptable

			Cont	rolling Se	ismic Drift: Fra	me 2			
Story	Story Height (ft)	Story Drift (in)	AI	lowable S	tory Drift (in) = 0.020h _{sx}	Total Drift (in)	A	lowable S D _{SEISMIC} 1	tory Drift (in) = 0.020h _{sx}
Roof	11.500 0.127		<	0.230	Acceptable	0.742	<	1.293	Acceptable
3rd	11.500	0.143	<	0.230	Acceptable	0.616	<	1.063	Acceptable
2nd	11.500	0.199	<	0.230	Acceptable	0.472	<	0.833	Acceptable
1st	12.250	0.189	<	0.245	Acceptable	0.273	<	0.603	Acceptable
Mezzanine	17.917	0.085	<	0.358	Acceptable	0.085	<	0.358	Acceptable

-			-						
			Cont	rolling Se	ismic Drift: Fra	me A	_		
Story	Story Height (ft)	Story Drift (in)	AI	lowable S D _{SEISMIC} *	tory Drift (in) = 0.020h _{sx}	Total Drift (in)	A	llowable D _{SEISMIC}	Story Drift (in) = 0.020h _{sx}
Roof	11.500	0.197	<	0.230	Acceptable	0.932	<	1.293	Acceptable
3rd	11.500	0.192	<	0.230	Acceptable	0.736	<	1.063	Acceptable
2nd	11.500	0.218	<	0.230	Acceptable	0.544	<	0.833	Acceptable
1st	12.250	0.217	<	0,245	Acceptable	0.326	<	0.603	Acceptable
Mezzanine	17.917	0.110	<	0.358	Acceptable	0.110	<	0.358	Acceptable
			Cont	rolling Sei	ismic Drift: Fra	me B			
Story	Story Height (ft)	Story Drift (in)	AJ	lowable S D _{SEISMIC} ¹	tory Drift (in) = 0.020h _{sx}	Total Drift (in)	4	llowable Dseismic	Story Drift (in) = 0.020h _{ss}
Roof	11.500	0.193	<	0.230	Acceptable	0.927	<	1.293	Acceptable
3rd	11.500	0.186	<	0.230	Acceptable	0.734	<	1.063	Acceptable
Ond	11 500	0.040	-	0.000	Assessable	0 5 40	1	0.022	Assessable

Table 3: Drift Results for Structure 1 Due to Seismic

Final Report: Signature Expression

April 7, 2009

			Cont	rolling Se	ismic Drift: Fra	me 3			
Story	Story Height (ft)	Story Drift (in)	AJ	lowable S D _{SEISMIC} ³	tory Drift (in) = 0.020h _{sx}	Total Drift (in)	AJ	lowable S D _{SEISMIC} :	tory Drift (in) = 0.020h _{sx}
Roof	11.500	0.110	<	0.230	Acceptable	0.653	<	1.293	Acceptable
3rd	11.500	0.126	<	0.230	Acceptable	0.543	<	1.063	Acceptable
2nd	11.500	0.183	<	0.230	Acceptable	0.418	<	0.833	Acceptable
1st	12.250	0.171	<	0.245	Acceptable	0.235	<	0.603	Acceptable
Mezzanine	17.917	0.064	<	0.358	Acceptable	0.064	<	0.358	Acceptable
			Cont	rolling Se	ismic Drift: Fra	me 4			
Story	Story Height (ft)	Story Drift (in)	A	lowable S	tory Drift (in) = 0.020h _{sx}	Total Drift (in)	Al	lowable S	tory Drift (in) = 0.020h _{ss}
Roof	11.500	0.103	<	0.230	Acceptable	0.641	<	1.293	Acceptable
3rd	11.500	0.117	<	0.230	Acceptable	0.538	<	1.063	Acceptable
2nd	11.500	0.167	<	0.230	Acceptable	0.421	<	0.833	Acceptable
1st	12.250	0.153	<	0.245	Acceptable	0.253	<	0.603	Acceptable
	100 0 100	0.400		0.050	Assessable	0.400	-	0.250	Assastable

			Cont	rolling Sei	ismic Drift: Fran	ne C			
Story	Story Height (ft)	Story Drift (in)	AI	Iowable S D _{SEISMIC} ³	tory Drift (in) = 0.020h _{sx}	Total Drift (in)	1	llowable D _{SEISMIC}	Story Drift (in) = 0.020h _{sx}
Roof	11.500	0,163	<	0.230	Acceptable	0.781	<	1.293	Acceptable
3rd	11.500	0.157	<	0.230	Acceptable	0.618	<	1.063	Acceptable
2nd	11.500	0.184	<	0.230	Acceptable	0.461	<	0.833	Acceptable
1st	12.250	0,182	<	0.245	Acceptable	0.277	<	0.603	Acceptable
Mezzanine	17.917	0.095	<	0.358	Acceptable	0.095	<	0.358	Acceptable
-			Cont	rolling Sei	emic Drift Fran	ne D			
Story	Story Height (ft)	Story Drift (in)	AJ	lowable S	tory Drift (in) = 0.020has	Total Drift (in)	1	llowable D _{seismic}	Story Drift (in) = 0.020hsx
Roof	11.500	0.149	<	0.230	Acceptable	0.774	<	1.293	Acceptable
3rd	11.500	0.147	<	0.230	Acceptable	0.625	<	1.063	Acceptable
2nd	11.500	0.189	<	0.230	Acceptable	0.478	<	0.833	Acceptable
1st	12.250	0.185	<	0.245	Acceptable	0.289	<	0.603	Acceptable
Mezzanine	17.917	0.104	<	0.358	Acceptable	0.104	<	0.358	Acceptable

Table 4: Drift Results for Structure 2 Due to Seismic

April 7, 2009

APPENDIX H: STEEL CONNECTIONS

Member	15		Member	16		Member	19		Member	20	
P _u (Kips)	255.82	For 1 Member]	P _u (Kips)	328.56 [For 1 Member]	P _u (Kips)	175.21 [F	"or 1 Member]	P _u (Kips)	135.59 [F	or 1 Member]
F _y (ksi)	50		F _y (ksi)	50		F _y (ksi)	50		F _y (ksi)	50	
F _u (ksi)	65		F _u (ksi)	65		F _u (ksi)	65		F _u (ksi)	65	
t (in)	1.125		t (in)	1.25		t (in)	1.25		t (in)	1.125	
b _{er} (in)	2.33		b _{er} (in)	2.70		b (in)	1.44		ber (in)	1.24	
	2.88	Controls		3.13	Controls		3.13	Controls		2.88	Controls
(in) w	10		w (in)	10.5		w (in)	10.5		w (in)	10	
Tension Rt	ipture		Tension R	upture .		Tension F	Rupture		Tension Ru	upture	
φP _n (Kips)	315.9	Okay	φP _n (Kips)	381.47	Okay	φP _n (Kips)	381.47	Okay	φP _n (Kips)	315.90	Okay
Shear Rup	oture		Shear Ru	ipture		Shear Ru	upture .		Shear Rup	pture	
a (in)	e		a (in)	3.25		a (in)	3.25		a (in)	3	
(in) d	С		(in) b (in)	3.25		b (in)	3.25		(in) d	e	
d (in)	4		d (in)	4		d (in)	4		d (in)	4	
A ₂₀ (in ²)	11.25		A _{st} (in ²)	13.125		A ₂₀ (in ²)	13.125		A ₂₄ (in ²)	11.25	
φP _n (Kips)	438.75	Okay	φP _n (Kips)	511.875	Okay	φP _n (Kips)	511.875	Okay	φP _n (Kips)	438.75	Okay
Bearing O	n Pin		Bearing C	Dn Pin		Bearing (On Pin		Bearing Or	In Pin	
A _{pb} (in ²)	4.5		A _{sb} (in ²)	5		Apb (in ²)	5		A _{pb} (in ²)	4.5	
φP _n (Kips)	303.75	Okay	φP _n (Kips)	337.5	Okay	φP _n (Kips)	337.5	Okay	φP _n (Kips)	303.75	Okay
Tension Tit	alding		Tension T	ielding		Tension 1	Tielding		Tension Tie	elding	
φP _n (Kips)	506.25	Okay	φP _n (Kips)	590.625	Okay	φP _n (Kips)	590.625	Okay	φP _n (Kips)	506.25	Okay
10 in v 1 105 in ni	nconnected		105 t v 1 25 t v	in.connected		10.5 in v 1.25 in	nin-connected		in ni 105 t v ni 05	in-connected	
member with a	14 in pin		member with	a 4 in pin		member with	na 4 in pin		member with a	a 4 in pin	

Calculation 1: Pin & Plate Size for Trusses

Final Report: Signature Expression

Union Station Expansion Washington DC

Final Report: Signature Expression

Final Report: Signature Expression

April 7, 2009

Calculation 3: Pin & Plate Size for Trusses Cont'd

Final Report: Signature Expression

April 7, 2009

Member	15	Member	16		Member	0		Member	20	
P. (Kips) 92(145 [For 1 Member]	P. (Kips)	1208.12	For 1 Member]	P. (Kips)	1238.41 [F	for 1 Member]	P _u (Kips)	897.855 [F	for 1 Member]
F _y (ksi)	. 20	F _y (ksi)	50	•	F _y (ksi)	S		F _y (ksi)	50	•
F _u (ksi)	65	F _u (ksi)	65		F _u (ksi)	65		F _u (ksi)	65	
t (in)	2.125	t (in)	2.375		t (in)	2.375		t (in)	2.125	
ber (in)	4.48 4.88 Controls	beer (in)	5.22 5.38	Controls	b _{err} (in)	5.35 5.38	Controls	berr (in)	4.33	Controls
w (in)	18	w (in)	19		(in) w	19		w (in)	18	
Tension Rupture		Tension	Rupture		Tension	Rupture		Tension R	Rupture	
φP _n (Kips) 10	11.08 Okay	φP _n (Kips)	1245.81	Okay	φP _n (Kips)	1245.81	Okay	φP _n (Kips)	1011.08	Okay
Shear Rupture		Shear	Rupture		Shear F	Rupture		Shear Ru	upture	
a (in)	5	a (in)	5.5		a (in)	5.5		a (in)	9	
b (in)	ស	(in) b (in)	5.5		b (in)	5.5		b (in)	5	
d (in)	8	d (in)	8		d (in)	8		d (in)	80	
A _{ar} (in ²)	38.25	A _{af} (in ²)	45.125		A ₂₀ (in ²)	45.125		A _{st} (in ²)	38.25	
φP _n (Kips) 14	N.75 Okay	φP _n (Kips)	1759.875	Okay	φP _n (Kips)	1759.875	Okay	φP _n (Kips)	1491.75	Okay
Bearing On Pin		Bearing	1 On Pin		Bearing	I On Pin		Bearing C	On Pin	
Apb (in ²)	17	Apb (in ²)	19		Apb (In ²)	19		Ape (in ²)	17	
φP _n (Kips) 1	147.5 Okay	φP _n (Kips)	1282.5	Okay	φP _n (Kips)	1282.5	Okay	φP _n (Kips)	1147.5	Okay
Tension Tielding		Tension	n Tielding		Tension	Tielding		Tension T	ielding	
φP _n (Kips) 17.	21.25 Okay	φP _n (Kips)	2030.625	Okay	φP _n (Kips)	2030.625	Okay	φP _n (Kips)	1721.25	Okay
18 in x 2.125 in pin-connec	pa	19 in x 2.375 ir	1 pin-connected		19 in x 2.375 in	pin-connected		18 in x 2.125 in p	oin-connected	
member with (2) 4 in pin		member with	h (2) 4 in pins		member with	n (2) 4 in pins		member with (:	2) 4 in pins	

Calculation 4: Pin & Plate Size for Trusses Cont'd

Final Report: Signature Expression

April 7, 2009

Washington DC

Union Station Expansion

Calculation 5: Pin & Plate Size for Trusses Cont'd

Final Report: Signature Expression

April 7, 2009

Calculation 6: Pin & Plate Size for Trusses Cont'd

Final Report: Signature Expression

Calculation 7: Pin & Plate Size for Trusses Cont'd

Final Report: Signature Expression

April 7, 2009

Calculation 8: Pin & Plate Size for Trusses Cont'd

April 7, 2009

Pin Connection Plate At Bottom of Truss 9 Structure [For 1 Member] Controls Okay Okay Okay Okay 20 31.34 [50 65 0.43 0.43 2.13 σ 2.5 9 in x 0.75 in pin-connecte member with a 4 in pin Rupture Ining On Pl Kine) P_u (Kips) F_y (ksi) F_u (ksi) Member ber (in) Ē t (in) Ē (iii) q Pin Connection Plate At Bottom of Truss 9 Structure [For 1 Member] Controls Okay Okay Okay Okay 19 41.53 50 65 0.75 0.75 2.13 0 2.5 75 9 in x 0.75 in pin-connecte member with a 4 in pin Ruptu ring On Pi P_u (Kips) Member F_y (ksi) F_u (ksi) ber (in) (iii) w t (in) (iii) q "do Pin Connection Plate At Bottom of Truss 9 Structure [For 1 Member] Controls Okay Okay Okay Okay 16 41.53 [50 65 0.75 0.57 2.13 0 2.5 9 in x 0.75 in pin-connected member with a 4 in pin ing On Pir Member P_u (Kips) F_y (ksi) F_u (ksi) ber (in) φP_n (Ki w (in) t (in) Ξ Ē Ξ Pin Connection Plate At Bottom of Truss 9 Structure [For 1 Member] Controls Okay Okay Okay Okay 15 31.335 | 50 65 0.75 0.43 2.13 o 2.5 9 in x 0.75 in pin-connect member with a 4 in pin with a 4 in pi On Pir Member P_u (Kips) Fy (ksi) Fu (ksi) ber (in) w (in) (ii) (iii) (iii) p

Calculation 9: Pin & Plate Size for Trusses Cont'd

Final Report: Signature Expression

April 7, 2009

Calculation 10: Plate Connection to Column

Final Report: Signature Expression

Calculation 11: Plate Connection to Column Cont'd

Final Report: Signature Expression

April 7, 2009

Calculation 12: Plate Connection to Column Cont'd

Final Report: Signature Expression

April 7, 2009

Calculation 13: Plate Connection to Column Cont'd

Final Report: Signature Expression

Calculation 14: Plate Connection to Column Cont'd

Final Report: Signature Expression

Calculation 15: Plate Connection to Column Cont'd
Final Report: Signature Expression

Calculation 16: Plate Connection to Column Cont'd

Final Report: Signature Expression

Calculation 17: Plate Connection to Column Cont'd

Final Report: Signature Expression

Calculation 18: Plate Connection to Column Cont'd

Final Report: Signature Expression

Gusset F	Plate Info	Bottom	Chord Info	Brace Me	mber Info
h (in)	30	Member	W16x31	Member	W14x257
w (in)	55	t _w (in)	0.275	t _w (in)	1.18
t (in)	2.25	t _r (in)	0.44	t _r (in)	1.89
F _y (ksi)	36	F _y (ksi)	50	F _y (ksi)	50
F _u (ksi)	58	F _u (ksi)	65	F _u (ksi)	65
l (in)	35.625	d (in)	18.5	A _g (in ²)	75.6
				Bolt Type	A490N
				φ (in)	1
				φ R _n (Kips)	35.3
				x (in)	1.75

Tables 1 through 3: Heavy Brace Member Information

10

Angles: Gu	sset Plate to Brace	Angles: Gusset	Plate to Column
Members	2L8x6x3/4 LLBB	Members	2L6x6x3/8
L (in)	Refer to Drawing	L (in)	23.5
t (in)	0.75	t (in)	0.75
F _y (ksi)	36	F _y (ksi)	36
F _u (ksi)	58	F _u (ksi)	58
Bolt Type	A490N	Bolt Type	A325N
φ (in)	1	φ (in)	7/8
φ R _n (Kips)	35.3	φ R _n (Kips)	21.6
Weld Size	-	A _b (in ²)	0.601
A _g (in ²)	19.88	Weld Size (in)	5/16

Tables 4 & 5: Heavy Brace Member Information Cont'd

					Determin	e Load Distrabu	tion				
a (in)	w _{GP} /2 (in)	α (in)	d _b (in)	e _b (in)	e _c (in)	$\beta = h_{GP}/2$ (in)	Φ (Deg)	tan Φ	α-βtanΦ	e₅tanΦ-ec	r (in)
1	27.5	28.5	0	0	0	15	62	1.87824	0.00	0.00	32.21
									No Mome	ents Exist	
P _u (Kips)	V _c (Kips)	H _c (Kips)	V _b (Kips)	H _b (Kips)							
617.45	287.58	0.00	0.00	546.39							

Calculation 19: Uniform Force Method

Final Report: Signature Expression

April 7, 2009

			Brace Member	to Double Ang	gle Connec	tion		
			Wide	Flange Limit S	tates			
Ten	ision Yielding		Те	nsion Rupture		-	Block Shear	
A _g (in²)	75.6		A _n (in ²)	74.2725		a (in)	2	
P _u (Kips)	617.45		x (in)	1.75)	L (in)	38	
φR _n (Kips)	3402	Okay	L (in)	36	10 Bolts	T/2 (in)	5	
			U	0.951388889		t _w (in)	1.18	
			$A (in^2)$	70.66203125	-	A _{gv} (in ²)	44.84	
			~ ((()	64.26	Controls	A _{nv} (in ²)	38.20	
			φR _n (Kips)	3132.675	Okay	A _{nt} (in ²)	4.34	
						0.6FuAnv	1489.90	
						0.6FyAgv	1345.20	Controls
						UbsFuAnt	281.86	
					-	φR _n (Kips)	1220.29	Okay
			Bolts (Sh	ear, Bearing, &	Tearout)	_		
E	Bolt Shear		Bearin	ng of Wide Flan	ge	Be	aring On Angles	
φR _n (Kips)	35.3	1 Bolt	φ2.4F _{utw} d _b	138.06	1 Bolt	φ2.4F _u td _b	156.6	1 Bolt
Tearout	t Flange Web	(1)	Tearout	Flange Other (2-10)	Tearo	ut Angles Edge	(10)
L _c (in)	1.46875		L _e (in)	2.9375		L _c (in)	1.46875	
φ1.2F _u L _c t _w	101.3878	1 Bolt	φ1.2F _u L _c t _w	202.775625	1 Bolt	φ1.2F _u L _e t	115.003125	1 Bolt
Tearout /	Angles Other	(1-9)	5					
L _e (in)	2.9375							
φ1.2F _u L _c t	230.0063	1 Bolt						
Bolt 1	35.3	138.06	156.6	101.39	230.01			
Bolt 2	35.3	138.06	156.6	202.78	230.01			
Bolt 3	35.3	138.06	156.6	202.78	230.01			
Bolt 4	35.3	138.06	156.6	202.78	230.01			
Bolt 5	35.3	138.06	156.6	202.78	230.01			
Bolt 6	35.3	138.06	156.6	202.78	230.01			
Bolt 7	35.3	138.06	156.6	202.78	230.01			
Bolt 8	35.3	138.06	156.6	202.78	230.01			
Bolt 9	35.3	138.06	156.6	202.78	230.01			
Boit 10	35.3	138.06	156.6	202.78	115.00	1		
φR _n (Kips)	/06	Окау						
T	nien Vieldin-		Doubl	e Angle Limit S	biales		Dical Chao-	
A (in ²)	10 eed	Dath	Ie A (in ²)	10 02605		a (in)	BIOCK Shear	
Rg (III)	19.88	Both	(in)	19.03625			2	
mP (Kinc)	745.00	0	x (in)	2.55	10 Dolla	L (III)	38	
ψrc _n (rups)	/15.68	Окау	L (ifi)	36	TU BOIts	LU/2 (IN)	5.5	
			0	0.929166667		t (in)	0.75	
			$A_{e}(in^{2})$	17.68784896		Agv (In ⁻)	28.50	
				16.898	Controls	Anv (In*)	23.86	
			φRn (Kips)	735.063	Okay	Ant (III-)	5.08	1
						0.6F _u A _{nv}	830.31	
						0.6FyAgv	615.60	Controls
						UbsFuAnt	294.53	
						φR _n (Kips)	682.60	Okay

Calculation 20: Brace Member to Double Angle Connection Limit States

Final Report: Signature Expression

April 7, 2009

	Do	uble Angle C	Connection From	n Brace Membe	r to Gusse	t Plate		
			Double Angl	e Limit States		20		
	Tension Yielding		Te	nsion Rupture	25		Block Shear	9
A _g (in²)	19.88	Both	A _n (in ²)	18.1925		a (in)	3	
P _u (Kips)	617.45		x (in)	2.55		L (in)	27	
φR _n (Kips)	715.68	Okay	L (in)	24	9	SL/2 (in)	2.75	
			U	0.89375	Use 0.9	t (in)	0.75	
			A (in ²)	16.37325	Controls	A _{gv} (in ²)	40.50	
			A _e (IT)	16.898		A _{nv} (in ²)	22.36	
			φR _n (Kips)	735.063	Okay	Ant (in ²)	1.78	
						0.6FuAnv	778.11	Control
						0.6FyAgy	874.80	
						UbsFuAnt	103.31	5
						φR _n (Kips)	661.06	Okay
			Bolts (Shear, Be	aring, & Tearou	t)	92.		
	Bolt Shear		Bea	ring On Angles		Bearin	g On Gusset	Plate
φR _n (Kips)	35.3	1 Bolt	φ2.4Futd _b	156.6	1 Bolt	ta < tp :	Only Check	Angles
Т	earout Angle (1)		Tearou	t Angle Other (2	-9)	Tearou	it Gusset Ede	je (9)
L _e (in)	1.46875		L _e (in)	1.9375		L _e (in)	1.46875	
φ1.2F _u L _e t	57.50156		φ1.2F _u L _e t _w	75.85313		φ1.2F _u L _c t _w	172.5047	
Tearo	ut Gusset Other (1	-8)						
L _e (in)	1.9375							
p1.2FuLet	227.5594					28		
Bolt 1	35.3	156.6	-	57.50	227.56			
Bolt 2	35.3	156.6		75.85	227.56			
Bolt 3	35.3	156.6	-	75.85	227.56			
Bolt 4	35.3	156.6	-	75.85	227.56			
Bolt 5	35.3	156.6	-	75.85	227.56	1		
Bolt 6	35.3	156.6		75.85	227.56			
Bolt 7	35.3	156.6		75.85	227.56			
Bolt 8	35.3	156.6	-	75.85	227.56			
Bolt 9	35.3	156.6		75.85	172.50			
φR _n (Kips)	635.4	Okay						
			Gusset Plate	e Limit States				
	Tension Yielding		Te	nsion Rupture			Block Shear	
A _g (inf)	80.15625		A _n (in [*])	30.5625		A _{gv} (in ²)	29.53125	
P _u (Kips)	617.45		P _u (Kips)	617.45		Anv (in ²)	16.24219	
φR _n (Kips)	4184.156	Okay	φR _n (Kips)	1329.469	Okay	Ant (in ²)	4.640625	
						0.6FuAnv	565.2281	Control
						0.6FyAgv	637.875	
						UbsFuAnt	269.1563	1
						φR _n (Kips)	625.7883	Okay

Calculation 21: Brace Double Angles to Gusset Plate Limit States

Final Report: Signature Expression

April 7, 2009

			Gusset Pla	te to Column C	onnection	1		
Shear	Stresses In Bo	olts	Avaible Te	ensile Strength F	Per Bolt	Ca	alculate r _{ut}	
f _v (ksi)	29.9059		Ft (ksi)	50.10	< 90 ksi	r _{ut} (Kips)	0	No Prying
			φr _n (Kips)	22.58357426				
			V	Veld Limit States	5			
	1000		Using	Table 10-2 In M	anual	Ver Art		
n	8		L (in)	23.5		Weld Size (in)	5/16	
P _u (Kips)	287.58							
φR _n (Kips)	338	Okay						
			Dout	vle Angle Limit S	tates			
1	Shear Yield	1	S	Shear Rupture		BI	ock Shear	
A _{gv} (in²)	17.625		Anv (in2)	11.625		A _{gv} (in ²)	35.25	
φR _n (Kips)	685.26	Okay	φR _n (Kips)	303.4125	Okay	A _{nv} (in ²)	24.00	
						A _{nt} (in ²)	3.86	
						0.6FuAnv	835.20	
						0.6FyAgv	761.40	Controls
						UbsFuAnt	223.62	
						φR _n (Kips)	738.76	Okay
			Bolts (Sh	ear, Bearing, &	Tearout)			
,	Bolt Shear		Be	aring on Angles		Bearin	ng On Columr	1
φR _n (Kips)	21.6	1 Bolt	φ2.4F _u td _b	68.5125	1 Bolt	ta < to : O	nly Check An	gles
Tea	arout Angle (1)		Tearou	t Angle Other (2	2-8)	Tearout	Column Edge	(8)
L _c (in)	1.03125	1 Bolt	L _c (in)	2.0625	1 Bolt	L _c (in)	1.03125	1 Bolt
φ1.2F _u L _e t	40.37344		φ1.2F _u L _e t	80.746875		φ1.2F _u L _e t	45.2460938	
Tearout	Column Other	(1-7)						
L _c (in)	2.0625	1 Bolt						
φ1.2F _u L _e t	90.49219							
Bolt 1	21.6	68.51	-	40.37	90.49	9		
Bolt 2	21.6	68.51	-	80.75	90.49	2		
Bolt 3	21.6	68,51	-	80.75	90.49	2		
Bolt 4	21.6	68.51	-	80.75	90.49	2		
Bolt 5	21.6	68.51	-	80.75	90.49			
Bolt 6	21.6	68.51	-	80.75	90.49	9		
Bolt 7	21.6	68.51	•	80.75	45.25			
φR _n (Kips)	302.4	Okay						

Calculation 22: Gusset Plate to Column Limit States

APPENDIX I: FINAL MEMBER SIZES FOR TRUSSES

Final Report: Signature Expression

Tables 1 through 5: Final Member Sizes for Trusses

Final Report: Signature Expression

Member 5	Anther 1	Membe	mber 7	Mannhow 11	18 IS	Member	ember 8	Member	Member
Member 1	WT15x95.5		Member 6	WT15x95.5	Member 11	W14x99		Member 16	(2) 1" Dia. Rod
Member 2	WT15x95.5		Member 7	W16x31	Member 12	W14x99		Member 17	W14x145
Member 3	WT15x95.5		Member 8	W16x31	Member 13	W14x99		Member 18	W14x145
Member 4	WT15x95.5		Member 9	W14x99	Member 14	W14x99		Member 19	(2) 1" Dia. Rod
Member 5	WT15x95.5		Member 10	W14x99	Member 15	(2) 1" Dia. Rod		Member 20	(2) 1" Dia. Rod

Tables 6 through 9: Final Member Sizes for Trusses Cont'd

APPENDIX J: LED SPECIFICATIONS

Final Report: Signature Expression

April 7, 2009

PHILIPS

Final Report: Signature Expression

Union Station Expansion Washington DC

April 7, 2009

tern	Specification	1 ft	4 ft.	Polar Cardela Dist	ribution	
	Beam Angle	10° × 60°		Cd 0	90° 0 22.5	44 67.5 93
	Color Temperature	2700 K. (+375 / -300)		340	0 1478 1479 80° 5 817 879	1470 M70 14 880 1255 14
	Lumens†	404	1616	476 100	70° 25 37 43	151 400 13 01 139 11
Output	Efficacy (Lm/W)	27.9		745	15 22 28 47 45 11 12	36 67 7 23 43 3
	Mixing Distance	6 in (152 mm) to uniform be	am saturation	m	20 * P 65 1 2	12 27 6 13
	Lumen Maintenance‡	100,000+ hours L70 @ 25* 0 50.000 hours L70 @ 50* C	G	H41	50° 75 1 1 85 1 0 90 0 0	1 5 0 1 0 0
	Input Voltage	100 / 120 / 220 - 240 / 277	VAC		-	
Electrical	Power Consumption	14.5 W maximum at full output, steady state	58.0 W maximum at full ourput, steady state	Illumina	nce at Distance	
Control		Commercially available EU/ of	ontrol dimmers		Genter Ben &	Bear Wide
	Dimanelone (Height x Widtl x Depth)	2.7 × 12 × 2.9 In (69 x 305 x 71 nm)	2.7 × 49 × 2.8 in (69 × 1219 × ⁷ 1 mm)	+z 58	92.8 23.8	48 558 120 10.98
	Waight	2.7 lb (1.2 kg)	10.8 lb (4.9 kg)	12.8	108	150 11.98
	Housing	Extruded anodited aluminum	1	14 8	48	310 37.48
	Lens	Clear polycarbonate		24.8	3.6	270 3388
	Fixture Connectors	integral male / famale waterp	roof connectors			Horiz Screek 40.0
Physical	Mounting	Multi-positional constant :or	que locking hinges		-	Vert. Spread: 6.8*
	Temperature	40" 122" F (40" 53" -4" = 122" F (-20" = 50" C	C) Operating 2) Startup		Fower Consumption	14.5 W
	Humidity	0 = 95%, non-condensing			Lumens	27.61
	Fixture Run Lengths*	88 – 110 VAC 97 – 120 VAC 180 – 220 VAC 127 – 240 VAC	Configuration: 1 f: (305 mm) fixtures installed enó-to-end 20A circuit, standard 50 fi: (15.2 m) Lauder Coble	For luc multiply is by 10.7	EmGLy	27.7 Lm/44
	Certification	UL / dUL, FOC Class A, CE, F	RoHS, WEEE			
Certification and Salety	LED Class	Class 2 LED product		H H Y	60*	
	Environment	Dry / Damp / Wet Location,	IP66		(=	

± L70 = 70% maintenance of lunen output. (When light output drops below 70% of initial output.)

*These figures, provided as a guideline, are accurate for this configuration only. Changing the configuration can affect the fixture run lengths.

OPTIBIN POWERCORE DIMAND

Fixtures						Acces	sories			
Item	Beam Angle	Voltage	Stze	Item Namber	Philips 12NC	ltern	Туре	Size	bern Number	Philies 12NC
		1001/4-0	1 ft	523-000330-00	910503700276	Leader	UL/dUL	ED A (15 2)	108-000041-00	910503700320
		DUMAL.	4 ft	523-000330-02	910503700278	Cable	CE	50 m (15.2 m)	108-000041-01	9105(3700320
		7771/0.0	1 ft	523-000330-08	910503700284			End-to-End	108-000039-00	910503700314
14/ C	100	2// VAC	4 ft	523-000330-10	\$10503700286		UL / aUL	1 A. (265)	100-000039-01	91050700015
avv Graze rowercole, 2/00 K	10° X 60°	220 - 240	1 ft	523-000330-16	910503700292	Jumper		5 ft (1.5 m)	108-000039-02	910503700316
		VAC	4 ft	522 000320 19	910502700294	Cable		End-to-End	108-000040-00	9105(3700317
			1 ft	523-000330-24	910503700300		CE	1 ft (305 mm)	108-000040-01	9105(3700318
		100 VAC	4 ft	523-00030-26	910503700302			5 ft (1.5 m)	108-000040-02	910503700319

Use item Number when ordering in North America.

Philips Color Kinetics 3 Burlington Woods Drive Burlington, Massachusetts 01803 USA Tel 888.Ful.RGB Tel 617.423.9999 Fax 617.423.9998 www.colorkinetics.com

Capyright © 2008–2009 Rhilps Solid-State Lighting Solutions, Inc. All rights reserved. Circonacore, Ohromanic, Ol, the OK logo Color Hostion, the Color Kiredonlogo ColorBiat, CalorBiae, CalorBiant, ColorGrass, CalorBiae, ColorBiaed, Debind EssentiaWhite, eW Kicolor Ecolor Cose, IntelWhite, W, Physee Light Without Limits, Option, and Powrecore are enfort registered travemarks or trademarks of Philips Solid-State Lighting Solation, inc. in the United States and/or other countries. All other brand or product names are trademarks or registered indemarks of their respective owners. Due to continuous improvements and innovations, specifications may change without notice.

DAS-00009-01 F01 02-09

APPENDIX K: IESNA REQUIREMENTS

Final Report: Signature Expression

Union Station Expansion Washington DC

April 7, 2009

10-13

ILLUMINANCE SELECTION

in enclosures that isolate ballast vibrations, or electronic ballasts.

ILLUMINANCE SELECTION

In 1979, the IESNA established an illuminance selection procedure, which was published in the 6th, 7th, and 8th editions of its *Lighting Handbook*. The philosophy of that procedure was to enable the lighting designer to select illuminances based on a knowledge of space and occupant characteristics as well as the task and worker characteristics.

The philosophy of that procedure has been embraced again in this edition, but the procedure has been modified and simplified to place visual performance and therefore illuminance selection more in balance with the other important lighting design criteria presented in this chapter and discussed throughout this edition of the *IESNA Lighting Handbook.* Specifically, the recommended illuminances provided in the Design Guide are based on the Society's judgment of best practice for "typical" applications. Every situation is unique so, naturally, typical conditions may not be appropriate for a specific application. As a professional, the lighting designer should have a better understanding of the particular space and the needs of the occupants and clients than what can be presented in a recommended illuminance value for a typical space.

Illuminance Recommendations

In 1979, the IESNA established nine illuminance categories, "A," the lowest set of recommended illuminances, through "I," the highest set. Each of the nine categories had general descriptions of the visual task, irrespective of the application. Generally, the same approach has been employed in this edition of the *IESNA Lighting Handbook* to help lighting designers establish the best task illuminance. However, four important modifications have been adopted.

- The recommended illuminances are no longer provided without reference to a specific application.
 Every application in the Design Guide has a specific recommended illuminance (horizontal, vertical, or both) representing best practice for a typical application.
- The nine illuminance selection categories established earlier by the IESNA have been reduced to seven categories and organized into three sets of visual tasks (orientation and simple, common, and special). These groupings provide additional clarity to the category descriptions (Figure 10-9).
- Additional precision has been given to the task descriptions in each category. In the previous three editions it was impossible for the lighting designer to unambiguously ascertain what constituted, for example, "low contrast" or "small size," Specific

Figure 10-9. Determination of Illuminance Categories*

Orientation and simple visual tasks. Visual performance is largely unimportant. These tasks are found in public spaces where reading and visual inspection are only occasionally performed. Higher levels are recommended for tasks where visual performance is occasionally important.

A	Public spaces	30 lx (3 fc)	
В	Simple orientation for short visits	50 lx (5 fc)	
С	Working spaces where simple visual		
	tasks are performed	100 lx (10 fc)	
	tasks are performed	100 lx (10 fc)	

Common visual tasks. Visual performance is important. These tasks are found in commercial, industrial and residential applications. Recommended illuminance levels differ because of the characteristics of the visual task being illuminated. Higher levels are recommended for visual tasks with critical elements of low contrast or small size.

D	Performance of visual tasks of high contrast and large size	300 lx (30 fc)
E	Performance of visual tasks of high contrast and small size, or visual tasks of low contrast and large	
	size	500 lx (50 fc)
F	Performance of visual tasks of low	
	contrast and small size	1000 lx (100 fc)

Special visual tasks. Visual performance is of critical importance. These tasks are very specialized, including those with very small or very low contrast critical elements. Recommended illuminance levels should be achieved with supplementary task lighting. Higher recommended levels are often achieved by moving the light source closer to the task.

Performance of visual tasks near threshold

G

3000 to 10,000 lx (300 to 1000 fc)

* Expected accuracy in illuminance calculations are given in Chapter 9, Lighting Calculations. To account for both uncertainty in photometric measurements and uncertainty in space reflections, measured illuminances should be with ± 10% of the recommended value. It should be noted, however, that the final illuminance may deviate from these recommended values due to other lighting design criteria.

ranges of contrast and size have been established for this edition (Figures 10-10 and 10-11).

 Recommended illuminances increase roughly logarithmically with increasing task difficulty by combined changes in task contrast and task size, as defined in Figure 10-10. These recommendations are guided by both the scientific literature and practical experience.

High illuminances can partially compensate for small size and low contrast to maintain high levels of visual performance. Changes in visual performance as a function of task contrast and size, background reflectance, and observer age can be calculated precisely.¹⁸ For well-controlled situations, this procedure can be a useful predictive tool. However, performance at a visual task depends on many uncontrolled vi-

Figure 1

Final Report: Signature Expression

April 7, 2009

Options Controls Reference Chapter(i) Display								C C C	ic to the	++		(and the second s			a constant								
 	OCATIONS AND TASKS		, ci	Aun A	DUI 10	=		2	Ortan	-		200	ome	wna	E III	port	ant		m	= yut	: Not i	mportant or	r not ap	plicable
Workshops		Appearance of Space and Luminaires	Color Appearance (and Color Contrast)	Direct Glare	licker (and Strobe)	ight Distribution on Surfaces	Ight Distribution on Task Plane (Uniformity)		oint(s) of Interest	eflected Glare	swopeu	ource/Task/Eye Geometry	parkle/Desirable Reflected Highlights	urface Characteristics	vstem Control and Flexibility	pecial Considerations	otes on Special Considerations	Iminance (Horizontal)	itegory or Value (lux) ^(b)	(Vertical)	tegory or Value (lux) ^(b)		ierence Chapter(s)	
(see Machining in Section II, Industrial) (see Machining in Section II, Industrial) General (see Machining shop General (see Machining shop Machine shop (s) Safety (s) Safety (s) Safety (s) During cargo handling (s) During cargo handl	Workshops				H	7	-		Р	Я	IS	S	is	IS	(S	dS	N	nIII	eD	nIII	e0		təş	
General General D Dench top D	(see Machining in Section II, Industrial)		-	-		-	-							-			-						-	
On bench top Machine shop On bench top D	General		100	1000	1000	11.22		-													1			
Machine shop Cargo holds (6) E C Cargo holds Cargo holds (6) E C Safety During cargo handling (6) E C During cargo handling Passageways and trunks (6) E C Passageways and trunks Passageways and trunks P P P Ansportation Terminals Passageways and trunks P P P Ansportation Terminals P P P P P Ansportating room and lounge P	On bench top				and the second				-			1							0	1	100			
Cargo holds Cargo holds (6) (6) (6) (6) (6) (7) Safety During cargo handling P P P P P P During cargo handling Passageways and trunks P P P P P Passageways and trunks P P P P P P Passageways and trunks P P P P P Passage trooms	Machine shop		ALC: NO	No.		-			-	Contraction of the						-	(9)		ш		0		-	
Safety During cargo handling Passageways and trunks Passageways and trunks Passageways and trunks Anithor Terminals Haiting room and lounge didet counters aggage checking aggage checking agg	Cargo holds	-				-				a state	1910	1		-	-		(9)		C	No.	Ц			
During cargo handling A A A A Passageways and trunks P P P P A Insportation Terminals P P P P A Ining room and lounge P P P P P Ining room and lounge P P P P P Ining room and lounge P P P P P Ining room and lounge P P P P P Ining room and lounge P P P P P Ining room and lounge P P P P P Ining room and lounge P P P P P Ining room and lounge P P P P P Ining room and lounge P P P P P Ining room and lounge P P P P P Ining room and lounge P P P P P Ining room and lounge P P P P P Ining room and lounge P P P P P Ining room and lounge P	Safety							-								-			-	50.000	1		1	
Passageways and funks Insportation Terminals Initing room and lounge Children Childr	During cargo handling			Contraction of the local division of the loc			23			1				-	-				A	1	V			
Insportation Terminals Insportation Terminals A A A faiting room and lounge faiting ro	Passageways and trunks						1						-				Perse				m		-	
laiting room and lounge cket counters aggage checking est rooms nocurse acting area es: Pesign issues are listed for room or space. Refer to specific task under Readin or Crawlo Documents	unsportation Terminolo									-				-					V		4			
cket counters aggage checking est rooms oncourse oncourse arding area es: es: besign issues are listed for room or space. Refer to specific task under Reading on Cashio Documents	Valting room and lounde		-									1		-	+	+			+	1			00 10	•
aggage checking est rouns motourse anding area es: es:	cket compare				1		122						-	-	-	-			0				Ch. 23	
aggage checking est rooms est rooms Parding area les: Design issues are listed for room or space. Refer to specific task under Reading or Granhis Discuss				and the second						Ser al	R	1000	-	-		-	1			-	T			
est noms oncourse arding area es: Design issues are listed for room or space. Refer to specific task under Reading or Granhis Doctan area are listed for room or space. Refer to specific task under Reading or Granhis Doctan area area area area area area area ar	aggage cnecking		-	No. N		-				ALC: N			-	-	-		1		ш		0			
arding area B D B D B C Carding area B D B D B C Carding area C Carding area C Carding area C Carding area C Cardin or Cardin	est rooms					-	-			No.			+	-	-	-	1			-	m			-
es:	oncourse					-	-			1			-	-	-	-	-	-	m	-	0			
es: Design issues are listed for room or space. Refer to specific task under Reading or Grandin Orden and the specific task under Reading or Grandin or Gr	barding area			No.	-	1				-	1	-			-	-			A	-	1			
Design issues are listed for room or space. Refer to specific task under Rearlinn or Grankin Docision and Marian and Ma			100			-					-	-	-	+	-	-	+		m	-				
	es. Design issues are listed for room or space. F	Refer to	specf	lic tas	sk ur	der	Read	ling		- day		locio												
Low illuminances (less than 30 inv) are diversible to the second s	Low illuminances (less than 30 hiv) are diver-	nance			-	-		0		5	2		0	-	Malt		<i>"</i>	+		-				
verse man bollock) are given in lux, values greater than 30 lux are given in letter categories.		V ;xni ui	alues	s gre	ater	han	30 11	IX al	e gi	ven	n lei	tter (cate	gori	es.	-	1	-	+-	-				

Figure 2

APPENDIX L: AVANTE 2x4 SPECIFICATIONS

Fluorescent

Page 125 of 131

April 7, 2009

Lithonia Lighting Fuorescent Dre Lithonia Way, Conyers, GA 50012 Prome 300-158-7703 Fax, 770-825-8789 www.lithonia.com

APPENDIX M: WAITING TERMINAL CALCULATIONS

Final Report: Signature Expression

	Lumen M	ethod For W	aiting ⁻
Compute Ca	avity Ratios		
RCR	1.86	25	
CCR	0		
FCR	1.00		
ρ	c		
Base Reflectance	80		
Wall Reflectance	60		
	1.8	62	
0	1.86	61	
PCC	2	60	
	53		
ρ	fc		
Base Reflectance	30		
Wall Reflectance	60		
	1	29	
<u> </u>	1.00	29	
Prc	1.2	28	
ρ		-	
Wall Area (ft ²)	420		
Window Area (ft ²)	980		
Pw	0.32		
C	U		
RCR	1.17		
CU @ 61/32/20	63		
Correction Factor	67		

erminal 1		
Lig	ht Loss Fac	tors
1) LLD		
Mean L	umens	2802
Intial L	umens	2950
LL	D	0.949831
2) LDD		
Cate	egory	VI
Cleanin	g Period	3
LC	DD	0.97
3) RSDD		
RS	DD	0.9
4) BF		
E	F	1.18
LLF	0.978458	
# Lum	inares	10.55712

Calculation 1: Lumen Method for Waiting Terminal 1

Calculation 2: Determining CU

Final Report: Signature Expression

7-30	LIGHTING CALCULATIO
GENERAL INFO	RMATION
Project identification UNTUN STATEUN EXPANSION	WATT TOLE TERMINAL
(Give name o	f area and/or building and room number)
Average maintained illuminance for design:	ma data
<u>∑</u> ^o footcandles	Tupo and color T& WITETE
Luminaire data:	Number per lumineire
Manufacturer: AVANTE LLETHONIAL	Total lumona par luminaire: $3950(3) = 8850$
Catalog number: 3AV-6-3-32-MDR-MV0LT-6EB10E	S
SELECTION OF COEFFICIE	NT OF UTILIZATION
Step 1: Fill in sketch at right	
	$L_{\mathcal{O}} = \underline{so} \%$ $h_{cc} = \underline{O}$
Step 2: Determine Cavity Ratios	-p=60%
	h _{BC} = 6.5'
Room Cavity Ratio. RCR = 1.86	W = 35
Ceiling Cavity Batio CCB = 0	Workplane
Floor Cavity Batio ECP - 1.00	$-\rho = 60\% - \rho = 30\%$ h ² _{FC} = 3.5°
Step 3: Obtain Effective Ceiling Cavity Reflectance (ρ_{cc})	$\rho_{\rm CC} = -$
Step 4: Obtain Effective Floor Cavity Reflectance (PFC)	$\rho_{FC} = \frac{\partial c_1}{\partial c_1}$
Step 5: Obtain Coefficient of Litilization (CII) from Manufactor	uratia Data 67
oup of other opencient of onization (co) from Manuacti	$CO = __$
SELECTION OF LIGHT L	OSS FACTORS
Luminaire ambient temperature	Recoverable Room surface dirt depreciation 0,9
Voltage to luminaire	RSDD Lamp lumen depreciation 0.95
Ballast factor	LLD Lamp burnouts factor
Luminaire surface depreciation	LBO
Total light loss factor, LLF (product of indi	vidual factors above) = 0.978
	NS
(Average Maintained III	liminance)
(Illuminance) × (Area)	
Number of Luminaires = $\frac{1}{(Lumens per Luminaire) \times (CU) \times (LU)}$	LF)
50 (35)(35)	INCL
= (3)(2450)(0.67)(0.478)	= 10.70
Illuminance = (Number of Luminaires) × (Lumens p	er Luminaire) × (CU) × (LLF)
(Area)	
= 12(3)(2950)(0,67)(0,47	8) = 57 Fc
1 1 h. hill the (35)(35)	2/12/00
Calculated by: 1024th that it	Date:
Figure 9-25. Average illur	ninance calculation sheet.

Final Report: Signature Expression

0 30 30 70 50 50 50 300 7000 50 40 30 20 10 0 900 97 700 51 40 43 30 20 10 0 900 70 60 50 40 30 20 10 0 900 70 60 50 40 30 20 10 0 900 70 60 50 40 30 20 10 0 900 70 60 50 40 30 20 10 0 900 70 60 50 40 30 20 10 0 900 70 60 50 40 30 20 10 0 900 70 60 50 40 30 20 10 0 900 70 60 50 40 30 20 10 0 900 70 60 50 40 30 20 10 0 900 70 60 50 40 30 20 10 0 900 70 60 50 40 30 20 10 0 900 70 60 50 40 40 40 40 40 40 40 40 40 40 40 40 40	0 0						
00070605040002010 0007060540000010 00070605400000010 00070605400000010 00070605400000010 000706054000000010 000706054000000010 0007060540000000000000000000000000000000		1	06	80	02	60	50
B000000000000000000000000000000000000	B0 80 80 70 66 66 44 46 79 77 37777777 77 75 74 77377777 77 75 74 773777777 76 76 74 75 74 7737777 76 76 75 74 7737777 76 76 75 74 7737777 76 76 75 74 773777 76 76 75 74 773777 76 76 76 76 76 76 76 74 737777 76 76 76 76 76 76 76 76 76 76 76 76 76 7		90 80 70 60 50 40 30 20 10 0	90 80 70 60 10 40 30 20 10 0	90 80 70 60 50 40 30 20 10 0	90 80 70 60 50 40 30 20 10 0	90 80 70 60 50 40 30 20 10 D
BB 08 08 08 08 08 08 08 08 07 17 77 77 77 77 77 77 77 77 77 77 77 77	000000000000000000000000000000000000	1					
88.27 56 56 51 51 50 46 50 50 56 56 55 55 55 55 55 55 55 55 55 55 55	0000 00000 00000 00000 00000 00000	~	10 88 88 87 86 85 85 84 84 82	01 71 JE OF OF FE EF OF OF OF			
Filt Relation Filt Rel	97 66 67 <td< td=""><td></td><td>38 87 86 85 84 83 81 80 79 76</td><td>2/ 5/ 6/ 6/ 6/ 1/ 1/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/</td><td>/0 69 68 68 67 67 66 66 65 64</td><td>60 59 59 59 58 57 56 56 55 53</td><td>50 50 49 49 48 48 47 46 46 44</td></td<>		38 87 86 85 84 83 81 80 79 76	2/ 5/ 6/ 6/ 6/ 1/ 1/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/ 6/	/0 69 68 68 67 67 66 66 65 64	60 59 59 59 58 57 56 56 55 53	50 50 49 49 48 48 47 46 46 44
PF 06 82 0077 15 72 16 067 66 66 67 05 06 95 55 0 90 55 56 55 14 84 44 44 11 30 95 55 14 84 44 42 10 39 95 39 39 37 B6 80 77 75 72 69 06 60 05 75 0 44 14 80 56 55 50 47 46 43 14 3 06 87 46 44 13 07 83 95 55 34 37 44 13 39 85 33 95 27 95 30 47 44 13 39 85 53 93 95 39 35 27 95 30 15 26 55 14 84 44 44 11 30 95 55 14 34 47 44 13 30 95 55 14 34 47 44 13 30 95 55 14 34 47 45 44 15 26 95 55 14 34 47 45 44 13 30 95 55 14 24 47 35 75 56 55 14 34 47 56 55 50 47 44 10 37 95 50 47 44 11 30 95 55 30 77 39 16 56 55 30 77 39 16 56 55 30 77 39 16 56 55 30 77 39 16 56 55 30 77 44 10 37 39 30 55 33 91 20 78 30 95 55 30 77 30 16 55 55 30 77 41 30 56 55 30 77 41 41 50 95 55 30 77 41 40 10 75 30 55 55 30 77 41 40 10 75 30 55 50 77 41 40 10 75 30 55 51 48 44 34 11 30 30 55 31 30 29 55 11 20 45 30 30 55 31 30 29 55 11 20 45 30 30 55 11 20 45 30 30 55 11 20 45 30 30 55 11 20 45 30 30 55 11 20 45 30 30 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 45 30 50 55 11 20 40 30 50 55 11 20 40 50 55 11 20 40 50 55 11 20 40 50 55 11 20 40 50 55 11 20 40 50 55 11 20 40 50 55 11 20 40 50 55 11 20 40 50 55 11 20 40 50 55 11 20 40 50 55 11 20 40 50 55 11 20 40 50 55 11 10 10 10 10 10 10 10 10 10 10 10 10	FT 55 26 66 50 57 77.77 60 77 66 56 55 55 44 74 33 95 75 55 55 14 44 44 13 96 64 44 41 13 27 11 68 67 77 57 26 66 66 50 77 77.77 66 65 66 50 77 96 66 66 50 76 97 75 66 65 55 14 44 44 13 96 66 51 44 44 41 33 38 96 44 44 11 33 27 39 97 45 45 41 43 33 38 96 44 44 11 33 28 55 97 45 45 41 41 33 38 96 44 44 11 33 28 55 96 44 44 11 33 28 55 96 44 44 11 33 28 55 96 44 44 11 33 28 55 96 44 44 11 33 28 55 96 44 44 11 33 28 55 96 44 44 03 38 53 13 96 44 40 38 55		37 86 84 82 80 79 77 76 74 73	78 76 75 73 71 70 68 66 65 63	60 67 65 64 63 61 50 58 57 54	60 59 59 58 57 55 54 53 52 50	50 49 48 48 47 46 45 45 44 42
B6 B0 7175 72 B0 B6 64 77 74 72 B0 76 66 76 73 70 67 64 61 58 55 351 76 64 15 957 55 351 44 44 34 1 399 55 53 34 74 44 34 1 399 55 53 34 75 75 90 64 44 43 1 399 55 53 34 52 74 54 24 39 35 53 34 52 74 55 34 17 54 24 39 55 53 14 35 37 53 35 33 50 22 75 10 75 50 56 55 53 74 54 24 33 75 35 35 33 50 22 75 10 75 26 55 55 55 74 75 44 13 39 55 53 74 54 24 39 35 53 34 55 24 25 95 55 37 17 56 55 55 53 74 54 53 55 53 74 74 13 39 35 55 37 15 75 55 50 47 44 13 30 38 55 13 72 56 55 53 74 54 30 33 55 55 53 74 54 30 33 55 53 74 55 50 77 44 15 55 50 45 41 33 26 55 55 37 45 40 38 55 53 74 74 41 39 38 55 53 74 75 56 55 53 64 74 41 30 38 55 13 90 46 31 30 37 34 30 35 55 13 22 52 52 12 10 10 10 10 10 10 10 10 10 10 10 10 10	B0 B017757 22 B05 B04 50 7747 200 55 55 1 776 75 10 55 55 54 54 46 44 474 505 55 54 54 46 44 474 505 55 54 45 44 474 505 55 54 54 45 44 47 505 55 54 54 45 44 47 505 55 54 54 45 44 47 505 55 54 54 54 44 47 505 55 54 54 54 44 44 505 55 54 55 50 47 44 42 50 55 507 45 54 51 50 46 44 44 505 55 54 54 54 54 33 505 55 54 54 54 33 505 55 54 54 54 33 505 55 54 54 44 38 505 56 55 50 47 44 42 50 55 507 45 54 51 66 55 50 44 44 42 60 55 507 45 54 51 66 55 50 44 44 43 506 55 50 45 41 38 505 55 54 54 43 38 505 55 54 54 43 38 505 55 54 54 43 38 505 55 54 54 43 38 505 55 54 54 43 38 505 55 54 54 43 38 505 55 54 54 43 38 505 55 54 54 13 38 35 53 506 45 50 55 50 54 14 38 506 55 55 54 54 30 55 55 506 45 50 55 50 54 13 53 26 506 45 50 55 50 54 13 53 26 506 45 50 55 50 54 13 53 26 506 45 50 55 50 54 13 53 26 506 45 50 55 50 54 13 53 26 506 45 50 55 50 54 13 53 26 506 45 50 55 50 54 13 53 26 506 45 50 55 50 54 13 53 26 506 44 27 13 50 255 27 22 12 107 44 27 72 55 27 22 17 107 44 27 72 55 27 22 17 107 44 27 72 55 27 22 17 107 44 27 75 25 22 12 107 44 27 75 25 22 12 107 44 27 75 25 22 12 107 44 27 75 25 22 12 107 44 27 75 25 22 12 107 44 27 75 25 22 12 107 44 27 75 25 22 17 107 44 27 75 25 22 17 107 44 27 75 25 22 17 107 44 27 75 26 12 17 14 12	-	37 85 82 80 77 75 73 71 69 67	78 75 73 71 69 67 65 63 61 57	68 66 64 62 60 58 56 55 52 50	97 07 27 27 27 27 27 27 27 27 27 27 27 27 27	50 48 47 46 45 44 43 42 41 38
66 87 75 75 76 <td< td=""><td>68 R2 / 87 72 06 76 60 65 75 16 76 46 15 65 53 51 67 46 15 95 74 16 04 46 44 59 56 54 51 49 46 44 20 38 50 77 45 42 40 38 55 16 75 44 42 03 85 51 87 44 42 03 85 51 47 44 42 03 85 51 87 44 42 03 85 51 87 44 42 03 85 51 87 24 03 85 51 87 24 03 85 51 87 24 03 85 51 87 24 13 83 85 51 47 44 10 75 85 53 51 75 86 55 55 55 55 55 55 55 55 55 55 55 55 55</td><td></td><td>36 83 80 77 75 72 69 66 64 62</td><td>77 74 72 69 67 65 62 60 57 55</td><td>68 65 62 60 58 55 53 52 50 47</td><td>59 57 55 53 51 48 45 44 43 41</td><td>50 48 4/ 45 44 42 40 39 38 36 50 48 46 44 43 41 38 37 36 34</td></td<>	68 R2 / 87 72 06 76 60 65 75 16 76 46 15 65 53 51 67 46 15 95 74 16 04 46 44 59 56 54 51 49 46 44 20 38 50 77 45 42 40 38 55 16 75 44 42 03 85 51 87 44 42 03 85 51 47 44 42 03 85 51 87 44 42 03 85 51 87 44 42 03 85 51 87 24 03 85 51 87 24 03 85 51 87 24 03 85 51 87 24 13 83 85 51 47 44 10 75 85 53 51 75 86 55 55 55 55 55 55 55 55 55 55 55 55 55		36 83 80 77 75 72 69 66 64 62	77 74 72 69 67 65 62 60 57 55	68 65 62 60 58 55 53 52 50 47	59 57 55 53 51 48 45 44 43 41	50 48 4/ 45 44 42 40 39 38 36 50 48 46 44 43 41 38 37 36 34
86 61 77 76<	66.0777266 77.06 77.06 77.06 77.07 77.06 77.07		35 82 78 75 72 69 66 63 60 57	76 73 70 67 64 61 60 66 60 64			
37 77 77 77 75 75 77 75 75 75 77 75 75 77 75 75 77 75 75 77 75 75 75 77 75 <td< td=""><td>37777 16 55 56 55 50 47 54 20 55 55 51 47 45 41 13 55 55 55 54 47 44 13 55 55 55 51 47 46 41 33 55 55 55 51 47 44 00 73 55 331 50 45 43 40 335 55 31 75 47 52 40 335 55 31 75 45 24 335 55 31 50 45 43 40 335 55 31 75 55 55 31 75 46 42 37 34 10 23 55 331 50 45 43 40 335 55 31 70 74 41 40 37 55 53 51 77 46 76 25 55 51 74 44 40 77 55 55 55 74 75 76 76 55 55 55 74 54 40 335 55 55 57 45 44 20 335 55 55 57 55 55 51 47 44 00 77 55 53 31 50 45 43 53 55 53 55 55 54 54 45 40 335 55 55 54 54 54 45 335 55 55 56 55 57 45 44 50 55 55 54 74 54 20 335 55 55 56 55 54 74 54 20 335 55 55 56 55 54 74 54 20 335 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 20 75 35 55 55 55 56 55 54 74 20 75 35 55 55 55 54 74 20 75 35 55 55 54 74 20 75 35 55 55 54 74 20 75 35 55 55 54 74 20 75 35 55 52 57 76 56 55 57 74 50 55 55 27 74 65 55 57 74 50 55 55 20 74 74 30 55 25 25 20 16 16 16 16 16 16 16 16 16 16 16 16 16</td><td> 54</td><td>15 80 77 73 60 65 60 60 67 50</td><td>10 10 10 10 10 10 10 10 10 10 10 10 10 1</td><td>0/ 04 01 59 5/ 54 50 48 46 44</td><td>59 56 54 51 49 46 44 42 40 38</td><td>50 47 45 43 41 39 36 35 34 29</td></td<>	37777 16 55 56 55 50 47 54 20 55 55 51 47 45 41 13 55 55 55 54 47 44 13 55 55 55 51 47 46 41 33 55 55 55 51 47 44 00 73 55 331 50 45 43 40 335 55 31 75 47 52 40 335 55 31 75 45 24 335 55 31 50 45 43 40 335 55 31 75 55 55 31 75 46 42 37 34 10 23 55 331 50 45 43 40 335 55 31 70 74 41 40 37 55 53 51 77 46 76 25 55 51 74 44 40 77 55 55 55 74 75 76 76 55 55 55 74 54 40 335 55 55 57 45 44 20 335 55 55 57 55 55 51 47 44 00 77 55 53 31 50 45 43 53 55 53 55 55 54 54 45 40 335 55 55 54 54 54 45 335 55 55 56 55 57 45 44 50 55 55 54 74 54 20 335 55 55 56 55 54 74 54 20 335 55 55 56 55 54 74 54 20 335 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 50 55 55 56 55 54 74 20 75 35 55 55 55 56 55 54 74 20 75 35 55 55 55 54 74 20 75 35 55 55 54 74 20 75 35 55 55 54 74 20 75 35 55 55 54 74 20 75 35 55 52 57 76 56 55 57 74 50 55 55 27 74 65 55 57 74 50 55 55 20 74 74 30 55 25 25 20 16 16 16 16 16 16 16 16 16 16 16 16 16	54	15 80 77 73 60 65 60 60 67 50	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0/ 04 01 59 5/ 54 50 48 46 44	59 56 54 51 49 46 44 42 40 38	50 47 45 43 41 39 36 35 34 29
37 75 76 76 76 74 41 35 35 55 54 44 37 35 35 55 55 54 45 37 35<	3777567 6555304 75770 665514744133 5555147441333 555147441333353 555147441333353 555147441333353 555147441333353 555147441333353 55514744133335511022325 82775697 65555304743 7570 66551484533 560155514845333 555147443333533 555147441333353 555147441333353 555147441333353 555147441333353 555147441333353 555147441333353 555147441333353 55514743333353 55514743333353 55514743333353 55514743333353 55514743333353 55514743333353 555147433333322 5551474133335332 555147433333332 555147433333332 5551474133333332 555147433333332 555147433333332 55514742373233252 555147433333332 55514742373233252 5551454133333322 5551454133333322 5551454133333332 5551454133333332 5551454133333332 5551454133333332 5551454133333332 55514541333333322 55514541333333322 55514541333333322 55514423732322 55514423732322 55514423732322 55514423732322 551544233333322 55514423732322 55154423333322 551544133332322 551544133333322 551544133333322 551544133333322 551544133333322 55154423333322 55154423333322 55154423333322 55154423333322 55154423333222 551641271413272322		M 70 75 71 67 69 60 60 60 60 60	10 1/2 00 00 20 60 60 90 71 01	67 63 60 58 55 51 47 45 44 41	59 56 53 49 47 44 41 39 38 36	50 47 45 42 40 38 35 34 35 27
30.7.7.12 05.55147440 74.00 05.55445434 66.0558454148 66.05584443383 58.55147440373333 58.455444433333 58.551474403733333 58.45046433333129 50.46433033322322128 50.464330333222322323 87.750658546074440 73.660555044338333 66.0555144433833 58.504504644433833 58.550474440 55.514296333222 55.5144433333222 55.51444333333222 56.50543044441335330228 58.5544441333330228222124 50.46413333302523222222 50.464133333025232222222 50.464133333025223221242 50.46413333302522222222 50.464133332025222124 50.464133332025222124 50.464133332025222124 50.464133332025222222 55.51444005522202 55.51444005522202 55.51444005522202 55.5144130522202116 50.44339332222222124 50.44339332222222124 50.44339332222222124 50.443393322222214 50.443393322222214 50.443393322222214 50.44339342952211711 50.44339432952211711 50.44339432952211711 50.44339432952211711 50.44339432952211711 50.44339432952211711 50.44339432952211711 50.44339432952211711 50.44339432952211711 50.44339432952211711 50.44339432952211711 50.44339432952211711 50.44339432952211711 50.44339432952211711 50.44339432952211711 50.44339432952211711 50.443394329522117111 50.44339429525217111	0.17.1250 06555104143 1700 066156845146 066156845146 07533333 06443033333 06443033333 064430373371002862 0.27560 0655304744 1766655444541333 0760455544454133334 066155544445403333 05643303233 056433037333 056433037333 0564330373373023822 05644330373730208252311 056443303323 05665544444133334 0560555444453333 05655144441333341 0560555244454333341 0560552444443033341 056055225216 056443333325 056655146441333341 056055225216 056443333252 05644133332252 05644133332252 05644133332252 05644133332252 05644133332252 05644133332252 05644133332252 05644133332252 05644133332252 05644133332252 056441373733025252 05644137733052522 05644137733052522 05652261161 176556 0565244454333252 05652444543332252 05644137730526127 056524171512 056524171512 05652474237222212 05652474237222221 0564413773305262217 0564413773305262217 0564413773305262217 0564413773305262217 056441377329522217 056441377329526217 056441377329526217 0564413772291611 07652414127 056527171612 05644137722161161 056443937252621712 0564439372526217176112 0564	ູ່	12 78 73 60 64 60 65 59 30 33 50	77 70 20 20 20 27 53 50 47 44	67 62 59 56 53 47 45 43 41 38	59 55 52 48 45 42 39 37 35 33	50 47 44 41 39 36 33 32 30 26
2 5 5 4 4 0	7 7 7 7 6 6 5 5 4 5	- 14	33 77 79 67 69 56 53 50 43 43	74 60 64 60 65 58 54 50 47 44 41	66 61 58 54 51 46 42 40 38 35	58 55 51 47 44 40 37 35 33 31	50 46 43 40 38 35 31 30 28 25
82 75 76 55 54 45 43 36 33 33 56 50 45 47 37 55 53 44 47 35 37 55 37 55 53 33 25 55 33 25 52 27 27 57 56 56 46 45 37 55 53 44 33 33 25 52 27 17 56 56 56 46 47 35 37 25 52 27 17 56 56 44 35 33 26 55 56 45 45 35 33 28 55 56 56 45 45 37 32 55 56 56 45 45 37 32 25 27 16 56 56 46 47 35 32 25 27 16 56 56 46 37 32 25 27 16 16 17 15 16 16 16 <td< td=""><td>87 70 66 56 46 04 74 40 74 66 65 56 44 94 54 23 93 55 66 05 55 14 84 13 33 35 25 56 56 44 31 25 32 29 56 56 44 31 25 35 22 21 50 46 42 37 34 31 29 28 50 46 42 37 36 31 27 55 22 22 21 7 36 50 54 44 13 53 33 25 52 22 21 7 36 50 54 44 13 53 33 25 52 22 21 7 36 50 54 44 13 53 33 25 55 24 41 33 33 31 26 55 44 41 35 33 25 55 24 23 7 34 25 7 34 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 20 7 34 15 7 25 26 42 37 32 25 25 22 20 21 7 15 15 7 15 56 50 54 44 30 35 22 22 25 24 15 4 0 35 32 25 25 22 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td></td><td>1 F 01 0F 00 00 00 10 11 10</td><td>14 09 04 00 02 48 49 41 38</td><td>66 60 56 52 49 45 40 38 36 33</td><td>58 54 50 46 43 39 35 33 31 29</td><td>50 46 43 40 37 34 30 28 26 24</td></td<>	87 70 66 56 46 04 74 40 74 66 65 56 44 94 54 23 93 55 66 05 55 14 84 13 33 35 25 56 56 44 31 25 32 29 56 56 44 31 25 35 22 21 50 46 42 37 34 31 29 28 50 46 42 37 36 31 27 55 22 22 21 7 36 50 54 44 13 53 33 25 52 22 21 7 36 50 54 44 13 53 33 25 52 22 21 7 36 50 54 44 13 53 33 25 55 24 41 33 33 31 26 55 44 41 35 33 25 55 24 23 7 34 25 7 34 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 30 27 24 25 7 34 20 7 34 15 7 25 26 42 37 32 25 25 22 20 21 7 15 15 7 15 56 50 54 44 30 35 22 22 25 24 15 4 0 35 32 25 25 22 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10		1 F 01 0F 00 00 00 10 11 10	14 09 04 00 02 48 49 41 38	66 60 56 52 49 45 40 38 36 33	58 54 50 46 43 39 35 33 31 29	50 46 43 40 37 34 30 28 26 24
B2756664585348454137 73676156524743403633 65054644373353230 650544044367335220 6505449454035333229 6505449454035333229 6505449454035333229 65054443733522922221 650544137343026253142 65054443333230285 650544433332302825 65055444433632292724 650544433332302825 6505534433333302825 6505534433333302825 6505534433333302825 6505534433333302825 6505534433333302825 6505534433333302825 6505534433333302825 6505444333322222222 65045403332282 7615466433322827282 6504433935312822229 65145440333228272422 6504433935312822229 6504433935312822229 65145403332282221916 660443393328222116161 770 766551440433332282 71655644343333228252220 65544443333222722219161 570443393282221916 56044339328222191612 776 6555144043332282 555444333322822219161 57044339322822219161 56044339328222191612 5644403323228229191612 776 655544033322822210 655444033372827242119 5704333322222911614 5044339328222191612 776 655544033372822201611 6544423332222191613 564443333222723191613 564443333222723191612 56444135302822191612 56444135302822191612 56444135302822191612 56444135302822191612 5644413530282211611101 56544423631282222016	87 56 66 55 14 64 23 335 736 76 16 55 34 41 36 33 30 55 55 44 44 35 52 30 55 55 44 44 35 52 30 55 56 54 44 41 36 52 30 56 56 54 43 43 30 35 12 52 22 10 56 56 54 43 43 30 35 12 52 22 10 56 55 44 41 35 53 30 25 55 56 55 34 34 30 35 51 25 52 20 56 54 43 43 30 35 12 52 52 20 56 54 43 43 30 35 12 52 52 20 56 54 43 43 30 35 12 52 52 20 56 54 43 33 33 20 52 55 54 54 23 73 22 52 11 56 55 54 43 30 33 30 32 52 56 55 54 44 30 33 33 32 52 52 55 54 54 23 73 22 22 11 50 44 30 33 32 22 52 10 15 56 44 30 33 32 25 22 10 15 56 44 30 33 22 22 21 10 56 54 43 30 32 72 42 20 56 54 44 30 33 22 22 21 10 57 54 42 37 32 22 22 11 56 55 54 43 30 32 71 15 11 56 54 43 30 32 27 12 22 10 57 16 55 52 22 10 15 56 44 30 33 20 55 22 10 56 16 16 17 30 30 26 22 11 56 16 16 17 30 30 26 22 11 56 16 42 77 32 22 21 10 57 54 42 37 32 22 22 11 57 54 42 37 32 22 22 11 56 55 54 43 30 32 27 12 21 57 51 43 30 52 22 11 56 55 54 43 30 32 27 12 21 57 54 43 30 32 22 22 11 57 54 43 30 32 22 21 10 57 54 43 30 32 22 21 10 50 44 30 33 22 22 21 11 50 54 30 33 22 22 21 10 50 54 30 33 22 22 21 10 50 54 30 33 22 22 21 10 50 54 30 33 22 22 21 10 50 54 30 33 22 22 21 10 50 54 30 33 22 22 21 10 50 54 30 33 22 22 21 10 50 54 30 33 22 22 21 10 50 54 30 33 22 22 21 10 50 54 30 33 22 22 21 10 50 54 30 33 22 22 21 10 50 54 30 33 22 22 21 10	~	32 76 70 65 59 54 50 47 44 40	74 68 63 58 54 49 45 42 38 35	66 60 55 51 48 43 38 36 34 32	58 53 40 45 40 37 34 31 20 28	
17 75 55 55 44 40 55 35 41 35 35 31 22 55 44 33 35 31 22 55 46 41 37 35 55 55 44 35 35 31 22 55 55 55 45 44 33 33 32 55 55 45 45 55 45 45 55 55 <td< td=""><td>17 17 17 16 56 56 44 45 33 35 32 25 56 44 19 33 35 32 25 56 44 19 33 35 32 25 55 44 19 33 33 25 55 45 45 36 44 19 33 25 55 45 45 36 36 35 32 25 45 45 36 36 35 32 25 45 45 36 <td< td=""><td></td><td>32 75 69 64 58 53 48 45 41 37</td><td>73 67 61 56 52 47 43 40 36 33</td><td>65 60 54 50 46 41 37 35 32 30</td><td>58 53 48 44 41 36 32 30 27 26</td><td>50 46 42 37 35 31 27 26 20 01</td></td<></td></td<>	17 17 17 16 56 56 44 45 33 35 32 25 56 44 19 33 35 32 25 56 44 19 33 35 32 25 55 44 19 33 33 25 55 45 45 36 44 19 33 25 55 45 45 36 36 35 32 25 45 45 36 36 35 32 25 45 45 36 <td< td=""><td></td><td>32 75 69 64 58 53 48 45 41 37</td><td>73 67 61 56 52 47 43 40 36 33</td><td>65 60 54 50 46 41 37 35 32 30</td><td>58 53 48 44 41 36 32 30 27 26</td><td>50 46 42 37 35 31 27 26 20 01</td></td<>		32 75 69 64 58 53 48 45 41 37	73 67 61 56 52 47 43 40 36 33	65 60 54 50 46 41 37 35 32 30	58 53 48 44 41 36 32 30 27 26	50 46 42 37 35 31 27 26 20 01
17 366 60 54 40 44 0 363 736 55 95 34 8 3 33 0 28 26 55 55 34 4 3 38 3 3 28 25 22 27 50 45 4 3 38 3 4 29 27 2 22 50 45 4 0 36 3 22 8 2 4 2 1 196 17 17 366 50 54 40 44 0 36 32 28 72 55 4 5 4 3 3 3 2 25 2 2 2 1 15 50 45 4 3 3 3 2 2 5 2 2 2 1 15 50 45 4 3 3 3 2 2 5 2 2 2 1 15 51 5 4 4 3 3 3 3 2 2 5 2 2 2 1 15 51 5 4 4 3 3 3 3 2 2 5 2 2 1 15 50 4 5 3 3 2 2 5 2 2 1 15 51 5 4 4 3 3 3 3 2 2 5 2 2 1 15 50 4 3 3 3 2 2 5 2 2 1 15 50 4 3 3 3 2 2 5 2 2 1 15 51 5 4 3 3 3 2 2 5 2 2 1 15 50 4 3 3 3 2 2 5 2 2 1 15 51 5 4 3 3 3 2 2 5 2 2 1 15 51 5 4 3 3 3 2 2 2 2 2 1 15 50 4 3 3 3 2 2 2 2 2 2 1 15 51 5 4 3 3 3 2 2 2 2 2 2 1 15 50 4 3 3 3 2 2 2 2 2 2 1 15 50 4 3 3 3 2 2 2 2 2 1 15 50 4 3 3 3 2 2 2 2 2 1 15 50 4 3 3 3 2 2 2 2 2 1 15 50 4 3 3 3 2 2 2 2 2 1 15 50 4 3 3 3 2 2 2 2 2 1 15 50 4 3 3 3 2 2 2 2 2 1 15 50 4 3 3 3 2 2 2 2 2 1 15 50 4 3 3 3 2 2 2 2 2 1 1 1 15 50 4 3 3 3 2 2 2 2 2 1 1 1 1 15 50 4 3 3 7 2 2 2 1 1 1 1 1 15 50 4 3 3 7 2 2 2 2 1 1 1 1 1 15 50 4 3 3 7 2 2 2 1 1 1 1 1 1 12 50 4 3 3 7 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 73 66 505 44 44 43 36 33 73 65 505 44 43 39 30 22 65 50 54 43 39 33 25 22 50 44 13 69 33 22 52 22 50 44 13 69 33 22 52 22 50 44 13 69 33 22 52 22 50 44 13 69 33 22 52 22 50 44 13 69 33 22 52 22 50 44 13 69 33 22 52 22 50 44 13 69 33 22 52 22 51 51 54 54 03 53 22 52 50 54 43 03 53 20 52 23 11 51 50 44 30 53 32 52 22 11 51 50 44 30 53 32 52 22 11 51 50 44 30 53 32 52 22 11 51 50 44 30 53 32 52 22 11 51 50 44 30 53 32 52 22 11 51 50 44 30 53 32 52 22 11 51 50 44 30 53 32 52 22 11 51 50 44 30 53 32 52 21 11 51 50 44 30 53 32 52 21 10 11 50 44 30 53 32 52 21 10 11 50 44 30 53 32 52 21 10 11 50 44 30 53 32 52 21 10 11 50 44 30 53 32 52 21 10 11 50 44 30 53 20 52 21 11 11 15 50 44 30 53 20 52 21 11 11 11 50 44 30 53 20 52 21 10 11 50 44 30 53 20 52 21 10 11 50 44 30 73 22 22 21 10 11 50 44 30 73 22 22 21 10 11 50 44 30 73 22 22 21 10 11 50 44 30 73 22 22 21 10 11 50 44 30 73 22 22 21 10 11 50 44 30 73 22 22 21 10 11 50 44 30 73 22 22 21 10 11 50 44 30 73 22 22 21 10 11 50 44 30 73 22 22 21 10 11 50 54 74 20 55 17 14 12 50 54 44 20 75 20 52 11 61 11 10 11 50 54 54 74 20 55 12 12 10 11 50 44 30 33 22 22 21 10 11 50 44 30 33 22 22 21 10 11 50 44 30 73 22 22 21 10 11 50 44 30 73 22 22 21 10 11 50 54 34 20 71 11 12 50 54 34 20 71 11 12 50 44 30 31 22 22 21 10 11 50 44		31 74 67 62 56 51 46 42 38 35	73 66 60 55 50 45 41 38 34 31	65 59 54 49 45 40 35 33 30 28	58 53 48 43 39 35 31 28 26 24	50 46 41 37 30 30 76 96 96 96 96 96 96 96 96 96 96 96 96 96
0.726458524742383430 7265582474237343027 645652474237322927 5754423732282520 504439352220 504439352220 504439352282421 16 9716556504540363228 726551454035332825 645551454035332825 655644393328252 555145413631223218 504439353222201715 504439353222220 5044393532222201755 504439335026221016 5044393328252211615 5044393328252211615 5044393328252211615 50443933320252211615 5044393332025221916 55644343333202521916 556443333229222191615 504439333202521916 50443933320252191615 50443933320252191615 50443933320252191612 50443933220252191612 5044393322022201615 50443933220222101615 50443933220222101615 50443933222221916112 50443933222221916112 5044393322222191612 5044393322222191612 50443933222221916112 50443933222221916112 50443933222221916112 504433631262221916112 504433633222221916112 504433633126222116114 5043333222221916112 5044336332222221916112 5044336331262221161112 504433633222221916112 50443363312622211716112 504433633222221916112 5044336331262211714112 504337322221916112 50433631262211714112 504337322221916112 504433631262211714112 504337322221916112 504433631262211714112 50433631262211714112 504337322221916112 5043363126221	0.72645882.4742333400 7265582.474237343027 64582.47423732.292724 575.5442.33222 575.442.33222 50.45.40363228 50.45.40363228 575.145.0552220 50.45.40363228 575.145.0552220 50.45.403632282 575.145.0552220 575.145.0552220 555.4430352282 575.145.0552220 575.145.0552220 575.145.0552220 575.145.0552220 575.145.0552220 575.145.0552220 575.145.0552220 575.04439352822220 575.0443935282220 575.044393722721917112 50443372272191714 50443372272191714 50433722829171412 565.555.555.555.555.555.555.555.555.52220 555.54423631262220 555.5442363126222191612 564.441353025221181615 564.441353025221916122 564.44135302522191612 564.44135302522191612 564.441353025221916120 555.555.555.555.555.555.555.555.555.55		31 73 66 60 54 49 44 40 36 34	73 65 59 53 48 43 39 36 32 29	65 59 53 48 43 38 33 30 28 26	58 53 47 43 38 34 29 27 24 22	50 46 41 36 33 00 05 00 10 HO
77 16356 50 45 35 55 15 145 15 56 45 33 28 55 57 51 54 15 54 136 31 27 23 20 16	17 15 55 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 <td< td=""><td></td><td>30 72 64 58 52 47 42 38 34 30</td><td>72 65 58 52 47 42 37 34 30 27</td><td>64 58 52 47 42 37 32 29 27 24</td><td>57 52 46 42 37 32 28 25 23 20</td><td>50 45 40 36 32 28 24 21 19/17</td></td<>		30 72 64 58 52 47 42 38 34 30	72 65 58 52 47 42 37 34 30 27	64 58 52 47 42 37 32 29 27 24	57 52 46 42 37 32 28 25 23 20	50 45 40 36 32 28 24 21 19/17
97 0 62 54 48 43 38 34 30 27 71 64 56 49 44 39 34 22 72 72 64 57 56 45 39 55 27 24 22 57 51 45 40 35 30 26 23 91 75 50 44 39 35 30 26 22 91 75 50 44 39 35 30 26 22 91 75 50 44 39 35 30 26 22 91 75 50 44 39 33 20 26 22 19 17 15 77 69 56 51 45 40 35 31 27 22 32 71 65 54 48 43 38 32 20 25 22 19 16 57 56 44 39 33 29 25 21 19 15 50 44 39 33 29 25 21 19 15 50 44 39 33 29 25 21 19 15 50 44 39 33 29 25 21 19 15 50 44 39 33 29 25 21 19 15 50 44 39 33 29 26 22 19 15 50 44 39 33 29 26 22 19 15 50 44 39 33 29 26 22 19 15 50 44 39 33 29 26 20 18 14 50 44 39 33 29 26 20 18 14 50 44 39 33 29 26 20 18 14 50 44 39 33 29 26 20 18 14 50 44 39 33 29 26 20 17 15 12 50 44 39 33 29 26 20 18 14 50 44 39 33 29 26 20 18 14 50 44 39 33 29 26 20 18 14 50 44 39 33 29 26 20 18 14 50 44 39 33 29 26 20 18 14 50 44 39 33 29 26 20 18 14 50 44 39 33 29 26 20 18 14 50 44 39 33 29 27 29 19 16 12 50 44 39 33 29 27 29 19 16 12 50 44 39 33 29 22 20 18 14 12 50 44 39 33 20 22 21 18 11 12 50 44 39 33 20 22 21 18 11 12 50 44 39 33 20 22 21 18 11 12 50 44 39 33 20 22 21 18 14 12 50 44 39 33 20 22 21 18 14 12 50 44 39 33 20 22 21 18 14 12 50 44 39 33 26 22 11 74 11 12 50 44 39 33 26 22 11 74 11 20 50 44 39 33 26 22 11 74 11 20 50 44 39 33 26 22 11 74 11 20 50 44 39 33 26 22 11 74 11 20 50 44 39 33 26 22 11 74 11 20 50 44 39 33 26 22 11 74 11 20	7) 0.70 82:54 48 43 38 33 30:27 71 64 56 49 44 39 34 32:27 24 64 57 50 45 39 35 20 27 24 22 57 51 45 40 35 30 26 23 2017 50 44 39 35 30 56 22 1916 50 44 39 35 30 56 22 1916 50 44 39 35 30 56 22 1917 51 56 44 39 33 20 25 22 1916 50 44 39 33 20 25 22 1916 50 44 39 33 20 25 22 1916 50 44 39 33 20 25 22 1916 50 44 39 33 20 25 22 1916 50 44 39 33 20 25 22 1916 50 44 39 33 20 25 22 1916 50 44 39 33 20 25 22 1916 50 44 39 33 20 25 22 1916 50 44 39 33 20 25 22 1916 50 44 39 33 20 25 22 1916 50 44 39 33 20 25 22 1916 50 44 39 33 20 25 22 1916 50 44 39 33 20 25 22 1916 50 44 39 33 20 25 22 1916 50 44 39 33 20 26 22 1917 50 44 39 33 20 26 22 1916 50 44 39 33 20 24 21 1816 50 44 39 33 20 24 21 1816 50 44 39 33 20 24 21 1816 50 44 39 33 20 24 21 1816 50 44 39 33 20 24 21 1816 50 44 39 33 20 24 21 1816 50 44 39 33 20 24 21 1816 50 44 39 33 20 24 21 1816 50 44 39 33 20 24 21 1816 50 44 39 33 20 24 21 1816 50 44 39 33 20 24 21 1816 50 44 39 33 20 24 21 1816 50 44 39 33 20 24 21 1816 50 44 39 33 20 24 21 1816 50 44 39 33 20 24 21 1816 50 44 39 33 50 24 1816 50 44 39 33 50 24 1816 50 44 39 33 50 24 1816 50 44 39 33 50 24 1816 50 44 39 33 50 24 1816 50 44 39 33 50 24 1816 50 44 39 33 50 24 1816 50 44 39 33 50 24 1816 50 44 39 39 22 24 1916 50 44 30 49 25 35 21 1816 50 43 33 50 2		79 71 63 56 50 45 40 36 32 28	72 65 57 51 45 40 35 33 28 25	64 58 51 46 40 36 31 28 25 23	57 51 45 41 96 91 97 99 90 10	
78 69 61 54 44 33 23 25 24 34 33 25 24 34 33 36 25 24 34 35 35 44 33 32 25 21 15 15 34 33 32 25 18 16 15 54 43 33 32 25 19 15 13 34 35 25 19 15 50 43 33 22 22 12 15 15 13 15 15 13 15 15 15 14 33 32 22 17 15 15 14 33 32 22 17 15 13 15 14 33 32 22 17 11 12 14 33 32 22 14 33 32 22 14 13 15 13 17 11 12 14 13 15 14 13 15 14 13 15 14 13 16 <td< td=""><td>760 65153 47 42 36 32 28 25 71 65 54 48 43 38 32 26 22 20 57 50 44 39 34 29 25 22 101 50 44 39 34 29 25 22 101 50 44 39 34 29 25 22 101 50 44 39 34 29 25 22 101 50 44 39 34 29 25 22 117 15 12 776 95 851 44 39 33 22 85 24 31 36 12 88 42 855 49 44 33 73 22 82 24 21 19 57 64 43 93 42 95 52 19 15 50 44 39 34 29 25 22 117 15 12 776 95 851 44 39 33 22 82 21 18 65 54 94 23 73 22 82 24 21 18 57 64 43 93 42 95 52 19 15 50 44 39 34 29 25 21 19 15 50 44 39 34 29 25 21 19 15 50 44 39 34 29 25 21 19 15 51 42 37 32 28 24 20 17 14 12 76 65 55 40 43 35 30 26 22 19 66 55 44 30 37 22 82 42 18 82 55 44 30 37 32 28 22 19 15 56 44 34 23 73 22 82 12 19 15 50 44 39 37 22 82 19 15 50 44 39 37 29 28 24 20 17 14 12 75 59 54 46 39 34 28 55 11 8 66 55 44 30 31 26 22 18 14 65 54 36 30 25 22 19 16 12 56 44 30 34 29 52 21 18 16 12 56 44 30 34 29 52 21 18 16 13 56 44 34 32 92 52 118 16 12 50 43 38 31 26 22 19 15 10 50 43 38 31 26 22 19 15 12 00 50 43 38 31 26 22 19 15 11 01 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 <t< td=""><td>1.7%</td><td>79 70 62 54 48 43 38 34 30 27</td><td>71 64 56 49 44 39 34 32 27 24</td><td>64 57 50 45 30 35 20 27 24 22</td><td>57 51 45 40 55 50 55 26 25 26 18</td><td>20 44 39 35 31 27 23 20 18 16</td></t<></td></td<>	760 65153 47 42 36 32 28 25 71 65 54 48 43 38 32 26 22 20 57 50 44 39 34 29 25 22 101 50 44 39 34 29 25 22 101 50 44 39 34 29 25 22 101 50 44 39 34 29 25 22 101 50 44 39 34 29 25 22 117 15 12 776 95 851 44 39 33 22 85 24 31 36 12 88 42 855 49 44 33 73 22 82 24 21 19 57 64 43 93 42 95 52 19 15 50 44 39 34 29 25 22 117 15 12 776 95 851 44 39 33 22 82 21 18 65 54 94 23 73 22 82 24 21 18 57 64 43 93 42 95 52 19 15 50 44 39 34 29 25 21 19 15 50 44 39 34 29 25 21 19 15 50 44 39 34 29 25 21 19 15 51 42 37 32 28 24 20 17 14 12 76 65 55 40 43 35 30 26 22 19 66 55 44 30 37 22 82 42 18 82 55 44 30 37 32 28 22 19 15 56 44 34 23 73 22 82 12 19 15 50 44 39 37 22 82 19 15 50 44 39 37 29 28 24 20 17 14 12 75 59 54 46 39 34 28 55 11 8 66 55 44 30 31 26 22 18 14 65 54 36 30 25 22 19 16 12 56 44 30 34 29 52 21 18 16 12 56 44 30 34 29 52 21 18 16 13 56 44 34 32 92 52 118 16 12 50 43 38 31 26 22 19 15 10 50 43 38 31 26 22 19 15 12 00 50 43 38 31 26 22 19 15 11 01 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 50 43 38 21 26 21 17 14 12 <t< td=""><td>1.7%</td><td>79 70 62 54 48 43 38 34 30 27</td><td>71 64 56 49 44 39 34 32 27 24</td><td>64 57 50 45 30 35 20 27 24 22</td><td>57 51 45 40 55 50 55 26 25 26 18</td><td>20 44 39 35 31 27 23 20 18 16</td></t<>	1.7%	79 70 62 54 48 43 38 34 30 27	71 64 56 49 44 39 34 32 27 24	64 57 50 45 30 35 20 27 24 22	57 51 45 40 55 50 55 26 25 26 18	20 44 39 35 31 27 23 20 18 16
78 69 65 14 35 32 22 15 <td< td=""><td>76 66 56 14 5 40 35 31 27 23 70 62 53 47 41 36 31 26 24 22 63 56 49 43 73 22 22 21 15 57 50 44 33 83 32 22 24 21 19 15 50 44 39 34 29 25 117 15 15 77 66 56 15 64 94 23 63 12 52 20 63 55 48 42 36 31 26 32 017 57 49 42 37 32 28 24 21 19 15 50 44 39 33 28 24 20 17 14 12 76 65 15 64 94 23 63 12 72 82 19 63 55 47 41 35 30 25 22 19 16 56 49 42 37 32 28 23 20 18 15 50 44 3 37 32 28 24 20 17 14 12 76 65 55 50 43 37 32 28 24 20 17 69 60 51 44 38 33 28 24 20 17 62 55 44 40 34 29 35 118 15 56 49 42 36 31 27 22 19 16 13 50 43 37 32 28 24 20 17 14 12 76 65 54 45 39 34 29 55 118 65 55 47 41 35 30 25 21 18 15 56 49 41 35 30 26 21 18 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 11 12 12 50 43 37 32 27 22 19 16 13 10 55 43 44 33 32 28 24 20 17 14 12 50 43 37 32 27 22 19 16 13 10 50 43 37 32 27 22 19 16 13 11 11 12 12 50 43 37 32 27 22 19 16 13 10 55 43 33 28 24 20 17 14 12 50 43 37 32 27 22 19 16 13 10 55 43 37 32 27 22 19 16 13 10 56 43 41 34 29 52 21 18 14 12 50 43 37 32 27 22 19 16 13 10 56 43 41 34 29 52 21 18 14 12 50 43 37 32 12 22 19 16 13 100 56 43 37 32 22 21 18 14 1</td><td>1.00</td><td>78 69 61 53 47 42 36 32 28 25</td><td>71 63 54 48 43 38 32 30 25 23</td><td>63 56 40 44 38 33 28 25 22 20</td><td>11 02 62 02 02 02 02 04 04 06 16 16 57 50 44 00 04 00 05 00 40 10 10</td><td>50 44 39 35 30 26 22 19 17 15</td></td<>	76 66 56 14 5 40 35 31 27 23 70 62 53 47 41 36 31 26 24 22 63 56 49 43 73 22 22 21 15 57 50 44 33 83 32 22 24 21 19 15 50 44 39 34 29 25 117 15 15 77 66 56 15 64 94 23 63 12 52 20 63 55 48 42 36 31 26 32 017 57 49 42 37 32 28 24 21 19 15 50 44 39 33 28 24 20 17 14 12 76 65 15 64 94 23 63 12 72 82 19 63 55 47 41 35 30 25 22 19 16 56 49 42 37 32 28 23 20 18 15 50 44 3 37 32 28 24 20 17 14 12 76 65 55 50 43 37 32 28 24 20 17 69 60 51 44 38 33 28 24 20 17 62 55 44 40 34 29 35 118 15 56 49 42 36 31 27 22 19 16 13 50 43 37 32 28 24 20 17 14 12 76 65 54 45 39 34 29 55 118 65 55 47 41 35 30 25 21 18 15 56 49 41 35 30 26 21 18 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 50 43 37 32 27 22 19 16 13 11 12 12 50 43 37 32 27 22 19 16 13 10 55 43 44 33 32 28 24 20 17 14 12 50 43 37 32 27 22 19 16 13 10 50 43 37 32 27 22 19 16 13 11 11 12 12 50 43 37 32 27 22 19 16 13 10 55 43 33 28 24 20 17 14 12 50 43 37 32 27 22 19 16 13 10 55 43 37 32 27 22 19 16 13 10 56 43 41 34 29 52 21 18 14 12 50 43 37 32 27 22 19 16 13 10 56 43 41 34 29 52 21 18 14 12 50 43 37 32 12 22 19 16 13 100 56 43 37 32 22 21 18 14 1	1.00	78 69 61 53 47 42 36 32 28 25	71 63 54 48 43 38 32 30 25 23	63 56 40 44 38 33 28 25 22 20	11 02 62 02 02 02 02 04 04 06 16 16 57 50 44 00 04 00 05 00 40 10 10	50 44 39 35 30 26 22 19 17 15
77 69 55 14 35 30 55 44 35 35 54 42 35 34 21 15 14 42 37 32 22 12 15 15 14 35 32 22 12 15 15 14 35 35 34 26 15 15 14 15 56 44 37 32 22 12 15 15 15 15 15 15 14 15 56 44 23 32 22 15 15 12 16 16 11 15 56 44 23 32 22 16 15 12 16 11 15 56 44 23 32 22 16 11 17 11 17 16 11 11 16 16 11 16 11 16 54 43 33 22 12 11 17 11 16 16 44 14 36 32 16 11 <td< td=""><td>77 69 56 1 44 39 33 29 25 22 70 61 53 46 40 35 30 26 22 20 63 56 44 23 63 25 21 17 15 19 50 44 38 33 28 24 20 17 15 12 57 49 42 37 32 28 23 20 18 14 50 43 37 32 28 24 20 17 15 12 56 65 56 56 56 56 56 56 56 56 56 56 56</td><td>-</td><td>78 69 60 51 45 40 35 31 27 23</td><td>70 62 53 47 41 36 31 28 24 22</td><td>63 56 40 43 37 39 97 94 94 40</td><td>01 01 70 70 00 00 00 00 01 01 10 10 10 10 10 10 10</td><td>50 44 39 34 29 25 21 18 16 14</td></td<>	77 69 56 1 44 39 33 29 25 22 70 61 53 46 40 35 30 26 22 20 63 56 44 23 63 25 21 17 15 19 50 44 38 33 28 24 20 17 15 12 57 49 42 37 32 28 23 20 18 14 50 43 37 32 28 24 20 17 15 12 56 65 56 56 56 56 56 56 56 56 56 56 56	-	78 69 60 51 45 40 35 31 27 23	70 62 53 47 41 36 31 28 24 22	63 56 40 43 37 39 97 94 94 40	01 01 70 70 00 00 00 00 01 01 10 10 10 10 10 10 10	50 44 39 34 29 25 21 18 16 14
7 65 55 56 43 37 32 22 19 17 65 43 37 32 22 19 17 16 16 56 44 37 32 22 19 17 16 16 13 17 16 16 56 44 37 32 22 19 16 13 17 14 12 56 44 37 32 22 19 16 11 17 14 56 44 37 32 22 19 16 11 17 14 56 44 37 32 22 19 16 11 17 14 56 44 37 32 12 16 11 17 14 56 44 34 35 32 16 11 17 10 17 11 16 11 17 10 11 10 11 10 10 11 10 16 11 11 20 12 11 11 10	77 65 55 50 43 37 32 22 19 15 56 49 42 37 32 22 19 17 16 15 56 49 42 37 32 22 19 15 56 49 42 37 32 22 19 15 56 49 37 32 22 19 15 56 49 37 32 22 19 15 56 49 37 32 22 19 15 56 49 43 36 35 32 22 19 15 56 49 37 32 22 19 15 56 49 37 32 22 19 15 56 49 37 32 22 19 15 11 16 56 49 43 36 36 36 16 16 16 17 11 12 56 49 43 42 56 18 16 16 16 16 16 <td< td=""><td></td><td>7 69 58 51 44 39 33 29 25 22</td><td>70 61 53 46 40 35 30 26 22 20</td><td>63 55 48 42 36 31 26 23 20 17</td><td>57 49 42 38 33 29 24 21 19 15 57 49 42 37 32 28 23 20 18 14</td><td>50 44 38 34 29 25 21 17 15 13 50 44 38 33 29 24 20 17 15 14</td></td<>		7 69 58 51 44 39 33 29 25 22	70 61 53 46 40 35 30 26 22 20	63 55 48 42 36 31 26 23 20 17	57 49 42 38 33 29 24 21 19 15 57 49 42 37 32 28 23 20 18 14	50 44 38 34 29 25 21 17 15 13 50 44 38 33 29 24 20 17 15 14
76615644253 554740353025221917 564942373227219173 50433732232916131 76605547403530252219 6950514483332842017 625446403322722191613 56494237322722191613 5043373227231916131 75505547403530262219 6955547403530262219 6337322722191613 5043373227231916131 56494135302621181613 5043373227231916131 75595446333328247114 664941353026211814 6154440332822723201613 56484134292521181612 5043363126221815120 7559545383328453833284538322723201612 6548413429252118161 5648413429252118161 504336312622181714120 75595454833328247016 68584841353022211814 615243631262218161 5648413429252118161 5042353025211741120 7564543831272218164 61524363126221814 61524363126221741105 56484134292621141107 5042353025211541120 705645438372721814106 6455438312722191510 605541338328221741106 55433522216161107763 4941322721814110076 705655385545383725318151206 665538312522116141106 554335222116141106 554335272118141106 55433572218161100763 49413227218141100703 66553831252116141105 56436337252116141106 55433725116141106 55433727218141106 554337272181741107 50423429151000703 4941322721816111000703	7661564423631272320 696005144333328242017 62554474135302521916 564442357322729191613 564442357322723191613 564442357322723191613 5644337322723191613 5644337322723191613 5644337322723191613 5644337322723191613 5644337322723191613 5644337322723191613 5644337322723191613 5644337322723191613 56443333252723101613 5644413530252118114 56444135502521181512 56443363126221814 615244383126221814 615244383126221814 61524438312622191612 564841355025211811411 50423323232321621310 755555534538332854538322822116111 665544383126221814 61524438312622191612 564841350025211811411 50423422923191510 66734383126221916120 564337222721181141107 5042342292319151200 66734383328222217141120 6655433822222171411107 5042342922319151200 5643372272118141107 50423429231915100 6673438332272118141106 564333252118141106 5643332272118141106 5643332272118141106 5643332272118141106 5643332272118141106 5643332272118141106 5643332272118141106 5643332272118141106 5643332272118141106 5643332272118141106 5643332272118141106 5643332272118141106 5643332272118141106 5643332272118141100 5643332272118141100 564333222217141106 564333222217141106 5642342929241815110907002 46132072016181411006	1 1	7 62 57 50 43 37 32 28 24 21	60 60 50 45 30 94 00 05 01 10			
76 60.55 57 40.35 30.25 23 105 <t< td=""><td>76 60 55 47 40 35 31 27 32 19 15 11 15 50 43 35 32 22 19 16 13 50 43 35 32 27 29 16 15 10 15 11 14 15 50 43 35 12 22 18 15 12 20 43 35 12 22 18 15 26 23 43 35 12 22 18 15 26 23 43 35 12 22 18 15 26 23 43 35 15 21 14 12 29 25 11 14 12 29 25 17 14 10 56 43 35 15 15 10 15 10 15 10 15 10 15 10 16 17 14 12 29 25 15 10 16 16 15 10 13 25 15 <td< td=""><td>100</td><td>6 61 56 49 42 36 31 27 23 20</td><td>60 60 51 44 38 33 98 94 50 50 50</td><td>91 61 22 92 02 96 14 14 65 20</td><td>56 49 42 37 32 27 22 19 17 14</td><td>50 43 37 32 28 24 20 17 14 12</td></td<></td></t<>	76 60 55 47 40 35 31 27 32 19 15 11 15 50 43 35 32 22 19 16 13 50 43 35 32 27 29 16 15 10 15 11 14 15 50 43 35 12 22 18 15 12 20 43 35 12 22 18 15 26 23 43 35 12 22 18 15 26 23 43 35 12 22 18 15 26 23 43 35 15 21 14 12 29 25 11 14 12 29 25 17 14 10 56 43 35 15 15 10 15 10 15 10 15 10 15 10 16 17 14 12 29 25 15 10 16 16 15 10 13 25 15 <td< td=""><td>100</td><td>6 61 56 49 42 36 31 27 23 20</td><td>60 60 51 44 38 33 98 94 50 50 50</td><td>91 61 22 92 02 96 14 14 65 20</td><td>56 49 42 37 32 27 22 19 17 14</td><td>50 43 37 32 28 24 20 17 14 12</td></td<>	100	6 61 56 49 42 36 31 27 23 20	60 60 51 44 38 33 98 94 50 50 50	91 61 22 92 02 96 14 14 65 20	56 49 42 37 32 27 22 19 17 14	50 43 37 32 28 24 20 17 14 12
75 59 54 46 39 34 28 52 118 68 56 49 42 58 31 26 22 18 14 65 53 45 38 32 27 23 20161 3 56 48 41 34 29 25 21 18 15 13 50 43 36 31 26 22 18 15 13 10 75 59 54 45 38 32 27 23 2016 15 68 56 44 36 31 26 22 18 14 61 52 34 58 38 32 27 23 20161 3 56 48 41 34 29 25 21 18 15 13 50 43 36 31 26 22 18 15 12 09 75 59 53 45 38 33 22 72 30 16 17 68 55 44 38 31 26 22 18 14 61 52 44 36 51 38 22 20 16 12 56 48 40 34 28 24 20 17 14 11 50 42 35 30 25 21 17 14 12 09 73 61 49 41 34 29 24 20 16 11 66 55 44 38 31 27 22 19 15 10 60 51 41 35 28 24 19 16 13 09 55 45 37 31 25 21 17 14 11 07 50 42 34 29 23 19 15 13 10 06 70 88 45 38 30 27 21 18 14 08 64 53 41 35 28 24 19 16 12 07 58 43 38 32 26 22 17 14 11 05 55 45 37 31 25 21 17 14 11 07 50 42 34 29 25 19 16 12 10 06 68 55 28 38 31 25 21 16 14 10 06 64 36 33 22 72 18 14 10 05 53 42 33 28 22 18 14 11 007 50 42 34 29 25 19 16 12 10 07 66 52 38 31 25 21 16 14 11 05 61 49 36 30 23 19 15 13 10 04 56 45 33 27 21 18 14 1005 53 42 33 28 22 18 14 11 1007 49 40 30 25 19 16 12 10 07 66 55 38 31 25 21 16 14 11 05 61 49 36 30 23 21 18 14 1005 53 42 33 28 22 18 14 11 1007 49 40 30 25 19 16 12 10 07 38 39 22 24 18 15 11 00 70 66 55 38 31 25 21 16 14 11 05 56 43 31 25 21 16 14 11 005 55 44 33 28 20 18 14 11 007 <	75 59 54 46 39 3 26 22 118 68 58 44 23 65 126 22 118 14 62 53 45 38 32 22 22 118 115 12 50 43 36 31 26 22 18 15 12 50 43 36 31 26 22 18 15 12 50 43 36 31 26 22 18 15 12 50 43 36 31 26 22 18 15 12 50 43 36 31 26 22 18 15 12 50 43 36 31 26 22 18 15 12 50 43 36 31 26 22 18 15 12 50 43 36 31 26 22 18 15 12 50 43 36 31 26 22 18 15 12 50 43 36 31 26 22 18 14 11 20 50 42 34 23 53 32 52 11 71 41 12 50 42 34 29 25 31 17 14 11 20 50 42 34 29 25 31 19 15 13 10 05 73 61 49 41 34 29 24 20 16 11 66 55 44 38 31 27 22 19 15 10 60 51 41 35 28 24 19 16 12 07 56 43 33 31 25 21 17 41 105 50 42 34 29 23 19 15 13 10 05 70 58 45 38 30 27 21 18 14 08 64 53 41 36 52 41 9 16 12 07 58 43 38 30 24 20 15 12 09 05 94 41 32 27 21 18 11 108 05 56 43 33 32 25 21 17 41 106 57 46 35 22 22 19 15 11 08 05 56 43 33 32 22 21 18 11 108 05 56 43 33 32 22 21 18 11 108 05 56 43 33 32 22 21 16 11 108 56 43 33 32 22 21 17 41 106 57 46 35 22 21 17 41 106 57 46 35 22 21 17 41 106 57 46 35 22 21 17 41 106 57 46 35 22 21 17 41 106 56 43 33 22 22 21 17 41 108 56 43 33 22 22 21 17 41 108 56 43 33 22 22 21 17 41 108 56 43 33 22 22 21 17 41 108 56 42 34 29 23 21 21 10 007 56 44 33 22 22 11 10 100 07 56 44 33 22 22 11 10 100 07 56 44 33 22 22 11 10 100 07 56 44 33 22 22 17 14 10 08 06 07 56 54 23 31 25 21 17 14 10 08 06 07 56 44 33 22	12	6 60 55 47 40 35 30 26 22 19	69 59 50 43 37 32 27 23 10 15		50 49 42 36 31 2/ 22 19 16 13	50 43 37 32 27 23 19 16 13 11
75 59 53 45 38 33 28 24 20 16 68 58 48 41 35 30 25 21 18 14 61 52 43 36 31 26 22 19 16 12 56 48 40 34 28 24 20 17 14 11 50 42 35 30 25 21 17 14 12 09 75 16 14 91 34 29 24 20 16 11 66 55 44 38 31 27 22 19 15 10 60 51 41 35 28 21 19 16 13 55 45 37 31 25 21 17 14 11 107 50 42 35 30 25 21 17 14 11 09 75 16 14 91 34 29 24 20 16 11 66 55 44 38 31 27 22 19 15 10 60 51 41 35 28 24 19 16 13 09 55 45 37 31 25 21 17 14 11 07 50 42 34 29 23 19 15 13 10 05 70 86 45 38 30 27 21 18 14 08 65 56 50 38 32 25 21 17 14 11 05 56 45 33 33 22 22 19 14 11 007 50 42 34 29 25 19 16 12 10 00 66 55 23 38 31 25 21 16 14 11 05 61 49 36 30 23 19 15 13 10 04 56 45 33 32 22 18 14 11 08 05 53 42 33 22 28 14 14 11 08 05 66 52 38 31 25 21 16 14 11 05 61 49 36 30 23 19 15 13 10 04 56 45 33 27 21 18 14 100 00 53 44 33 28 22 18 14 11 08 05 66 55 38 31 25 21 16 14 11 05 61 49 36 30 23 19 15 13 10 04 56 45 33 27 21 18 14 10 09 43 53 44 33 28 22 18 14 11 009 07 49 40 30 25 19 16 12 10 07 03 66 55 13 65 21 28 11 10 9 04 55 44 33 25 21 18 14 11 06 56 45 33 27 21 18 14 11 08 03 55 44 31 25 20 74 18 15 11 09 07 03 49 30 25 19 16 12 10 07 03 66 55 13 65 21 15 11 10 9 04 55 44 31 25 22 71 18 14 11 08 03 55 43 31 25 21 18 14 11 09 07 02 47 37 27 22 71 18 110 09 07 03	75 59 53 45 38 33 28 24 20 16 68 58 48 41 35 30 25 21 18 14 61 52 44 36 31 26 22 19 16 12 56 48 40 34 28 24 20 17 14 11 50 42 35 30 25 21 17 14 12 09 73 61 49 41 34 29 24 20 16 11 66 55 44 38 31 27 22 19 16 10 60 51 41 35 28 24 19 16 13 09 55 45 37 31 25 21 17 41 10 50 42 34 29 23 19 15 13 10 06 73 61 49 41 34 29 24 20 16 11 66 55 44 38 31 27 22 19 16 12 07 58 43 33 32 26 22 17 14 11 05 55 45 37 31 25 21 17 41 10 50 42 34 29 23 19 15 13 0 06 70 56 45 38 30 27 21 18 14 08 64 53 41 35 28 24 19 16 12 07 58 43 38 30 27 21 18 11 05 50 42 34 29 25 21 17 41 106 54 43 33 22 52 17 14 11 06 57 46 35 29 23 19 15 12 00 05 49 41 33 27 21 18 11 108 05 66 52 38 31 25 21 16 11 108 04 49 40 30 25 19 16 12 00 7 03 66 52 38 31 25 21 16 11 105 61 49 36 30 22 21 16 14 10 05 53 42 33 28 22 18 14 11 08 04 55 43 31 25 20 16 11 20 07 03 55 34 23 32 82 28 21 11 108 07 02 47 30 25 19 16 12 10 07 03 66 52 38 31 25 21 16 11 105 61 49 36 30 27 21 18 14 11 08 03 55 43 31 25 19 16 12 00 703 53 42 33 28 22 18 14 11 08 07 02 47 30 25 21 71 41 10 09 77 03 66 52 38 31 25 21 16 11 109 04 59 46 33 27 21 18 14 12 09 04 55 43 31 25 19 16 12 00 7003 51 39 29 24 18 15 11 09 07 02 47 37 27 22 17 14 10 08 06 07 66 55 136 22 21 16 11 109 04 56 46 53 32 72 19 16 12 10 08 03 51	10	5 59 54 46 39 34 28 25 21 18	68 58 49 42 36 31 26 22 18 14	62 53 45 38 30 57 03 00 16 10	56 49 41 35 30 26 21 18 16 13 56 49 41 37 00 00 00 10 10 10 10	50 43 36 31 26 22 18 15 13 10
7361 49 41 34 29 24 26 44 38 31 27 21 14 13 28 24 37 31 25 15 11 14 10 56 45 37 31 25 17 14 10 56 45 37 31 25 17 14 10 56 45 37 31 25 17 14 10 56 45 35 35 22 16 11 10 56 45 35 35 22 16 11 10 56 45 35 35 22 16 11 10 56 45 35 35 21 21 10 10 56 45 35 21 11 10 57 16 11 10 56 55 35 22 21 11 10 57 16 11 10 57 15 11 10 55 23 22 21 11 10 55 14 <	73 61 49 41 34 29 24 20 16 11 66 55 44 38 31 27 22 19 15 10 60 51 41 35 28 24 19 16 13 00 55 45 37 31 25 21 17 41 10 7 50 42 34 29 23 19 15 13 10 06 70 58 45 38 30 27 21 18 14 08 64 53 41 35 28 24 19 16 12 07 58 43 38 33 22 23 12 52 11 34 11 07 50 42 34 29 23 19 15 12 00 54 43 35 30 24 20 15 12 09 05 54 43 35 30 24 20 15 12 09 05 54 43 33 32 21 18 14 10 80 04 49 41 33 25 21 18 14 11 08 05 66 52 38 31 25 21 16 11 105 61 49 36 30 23 19 15 13 10 05 53 42 33 28 22 18 14 11 08 04 49 40 30 25 19 16 12 10 07 03 66 52 38 31 25 21 16 11 105 61 49 36 30 23 19 15 13 10 05 53 42 33 22 28 114 11 08 04 49 40 30 25 19 16 12 10 07 03 66 52 38 31 25 21 16 11 105 61 49 36 30 23 19 15 13 10 04 55 43 31 26 20 16 12 10 07 03 48 39 29 24 18 15 11 09 07 03 66 55 13 62 92 22 19 15 11 09 04 59 46 33 27 21 18 14 12 08 03 55 43 31 25 19 16 12 10 07 03 51 39 29 24 18 15 11 09 07 02 47 37 27 22 17 14 10 08 06 07 8e are based on a length to width ratio of 1.6.	1	75 59 53 45 38 33 28 24 20 16	68 58 48 41 35 30 25 21 18 14	61 52 44 36 31 26 22 19 16 12	56 48 40 34 28 24 20 17 14 11 11 12	50 43 36 31 26 22 18 15 12 09 50 42 35 30 25 21 17 14 12 00
70 56 45 38 30 27 21 18 14 08 64 53 41 35 28 24 19 16 12 07 56 43 31 32 52 24 19 16 13 09 55 45 37 31 25 21 17 14 11 07 50 42 34 29 23 19 15 13 10 06 68 55 43 35 27 23 18 14 108 65 53 28 22 28 11 74 11 105 57 48 35 29 23 19 15 13 10 05 53 42 38 22 28 14 11 08 005 53 42 35 27 28 17 14 11 00 55 53 42 35 27 28 14 11 08 005 55 42 35 27 28 14 11 08 005 55 42 35 27 28 14 11 08 005 55 42 35 27 28 14 11 08 005 55 43 35 28 22 18 14 11 000 105 55 43 35 28 28 14 11 108 00 28 16 12 10 07 03 65 53 38 28 28 14 11 08 00 05 53 42 35 29 15 15 10 07 03 65 53 42 35 27 28 14 11 08 00 05 55 43 35 28 28 14 11 108 00 05 55 43 38 28 28 14 11 108 00 05 55 43 38 28 28 14 11 08 00 00 00 00 00 00 00 00 00 00 00 00	7055 45 38 30 27 21 18 14 08 64 53 41 35 28 24 19 16 12 07 60 43 43 33 22 65 21 71 41 10 65 54 43 53 30 27 21 18 14 10 80 56 45 33 33 22 65 21 77 41 10 55 54 43 53 30 27 21 18 14 10 80 56 65 53 83 22 52 17 71 11 05 57 46 35 22 25 17 41 10 55 57 46 35 22 23 15 51 70 00 70 36 55 43 33 33 22 16 51 10 90 70 36 55 19 15 11 00 07 65 55 19 15 11 00 07 65 55 19 15 11 00 07 65 55 19 15 11 00 07 65 55 19 15 11 00 07 65 55 19 15 11 00 07 65 55 19 15 11 00 07 03 66 55 19 15 11 00 07 03 65 51 36 29 22 19 15 11 09 00 70 36 55 19 15 11 00 07 03 65 51 36 29 22 19 15 11 09 04 59 46 33 27 21 18 14 10 08 04 55 40 31 25 21 16 11 105 61 49 30 33 27 21 18 14 12 09 04 55 40 31 25 21 16 11 100 04 59 46 33 27 21 18 14 10 08 06 02 65 51 36 29 22 19 15 11 09 04 59 46 33 27 21 18 14 10 08 06 50 33 33 22 28 21 16 12 10 07 03 65 53 43 30 20 21 16 12 10 07 03 65 53 43 30 20 21 16 12 10 07 03 65 50 40 31 25 20 10 7 03 65 51 36 29 22 19 15 11 09 07 102 47 30 50 50 70 30 65 50 40 31 25 20 10 7 03 65 51 36 20 61 10 10 10 10 10 10 10 10 10 10 10 10 10		3 61 49 41 34 29 24 20 16 11	66 55 44 38 31 07 00 10 15 10	00 E4 44 01 00 01 10 10 10 00		20 15 00 00 50 51 11 14 15 00
68 55 42 35 27 23 18 15 12 06 55 50 38 32 55 21 71 411 05 57 46 35 29 23 19 15 13 10 05 58 44 33 53 02 42 12 15 12 09 05 49 41 32 27 21 18 14 11 08 05 66 55 28 38 12 52 11 61 41 105 57 46 35 29 23 19 15 13 10 05 55 34 23 32 28 28 114 11 08 05 58 44 33 28 22 18 14 11 08 05 66 52 38 31 25 21 16 14 11 05 61 49 36 30 23 19 15 13 10 04 56 45 33 32 21 18 14 11 08 01 58 44 33 28 28 18 14 11 09 07 48 94 03 02 51 91 61 21 10 07 66 52 38 31 25 21 16 14 10 05 55 44 36 39 02 23 19 15 13 10 04 56 45 33 37 21 18 14 12 09 04 52 44 03 156 20 161 21 00 70 48 39 29 24 18 15 11 09 77 03 65 51 36 29 22 19 15 11 09 04 55 44 33 125 19 16 12 10 08 03 51 39 29 24 18 15 11 09 07 02 47 37 27 22 71 14 10 08 07	68 55 42 35 27 23 18 15 12 06 62 50 38 82 25 21 17 11 05 57 46 35 29 23 15 15 10 05 54 43 35 27 23 16 15 10 00 05 49 41 32 27 21 18 11 10 05 66 55 38 31 25 21 16 11 05 61 49 36 30 23 19 15 11 05 57 46 35 29 23 19 15 13 10 05 53 42 33 28 22 19 11 10 08 04 49 40 30 25 19 16 12 10 07 03 66 55 38 31 25 21 16 11 05 61 49 36 30 23 19 15 13 10 04 55 46 35 32 22 19 15 11 08 04 52 40 31 26 20 16 12 10 07 03 48 39 29 24 18 15 11 09 07 03 66 55 38 31 25 21 16 11 105 59 46 33 27 21 18 14 12 09 04 55 43 31 25 19 16 12 10 07 03 48 39 29 24 18 15 11 09 07 03 66 51 38 29 22 19 15 11 09 04 59 46 33 27 21 18 14 12 09 03 51 39 29 24 18 15 11 09 07 02 47 37 27 22 17 14 10 08 06 02 ble are based on a length to width ratio of 1.6. 16 or of cavity. 51 39 29 24 18 15 11 09 07 02 47 37 27 22 17 14 10 08 06 02	~	0 58 45 38 30 27 21 18 14 08	64 53 41 35 28 24 10 16 19 07	50 11 12 28 28 24 19 16 13 09	55 45 37 31 25 21 17 14 11 07	50 42 34 29 23 19 15 13 10 06
66 52 38 31 25 21 16 14 11 05 61 49 36 30 23 19 15 13 10 04 56 45 33 27 21 18 14 120 00 53 42 18 14 11 08 04 49 40 30 25 19 16 17 10 07 03 66 52 38 31 25 21 16 17 10 04 56 45 33 27 21 18 14 120 00 53 40 31 26 20 16 12 10 07 03 48 40 3 26 24 18 15 11 09 07 03 66 52 38 31 25 21 18 14 12 09 04 55 43 32 27 21 18 14 12 00 55 43 32 29 24 18 15 11 09 07 02 47 37 27 22 17 14 10 00 07	66 52 38 31 25 21 16 14 11 05 61 49 36 30 23 19 15 13 10 04 56 45 33 32 72 118 14 12 09 04 53 42 33 52 22 19 11 108 04 49 40 30 25 19 16 12 10 07 03 66 55 38 22 19 15 11 09 04 59 43 31 25 11 108 04 56 43 33 27 21 18 14 12 09 03 55 43 31 25 19 16 12 10 07 03 48 39 29 24 18 15 11 09 07 03 66 55 38 22 22 19 15 11 09 04 59 46 33 27 21 18 14 11 08 03 55 43 31 25 19 16 12 10 08 03 51 39 29 24 18 15 11 09 07 02 47 37 27 22 17 14 10 08 06 02 ble are based on a length to width ratio of 1.6. Itoor of cavity. 139 29 24 18 15 11 09 07 02 47 37 27 22 17 14 10 08 06 02	9	8 55 42 35 27 23 18 15 12 06	62 50 38 32 25 21 17 14 11 05	50 45 30 32 20 22 1/ 14 11 06 57 46 35 30 32 10 15 12 10 05	54 43 35 30 24 20 15 12 09 05	49 41 32 27 21 18 14 11 08 05
65 51 36 29 22 19 15 11 09 04 59 46 33 27 21 18 14 11 08 03 55 43 31 25 19 16 12 10 08 03 51 39 29 24 18 15 11 09 07 02 47 37 27 22 17 14 10 08 06 07 03 51 39 29 24 18 15 11 09 07 02 47 37 27 22 17 14 10 08 06 07 07 08 08 10 08 07 02 47 37 27 22 17 14 10 08 06 07 07 08 08 08 10 08 06 07 08 08 08 08 08 08 08 08 08 08 08 08 08	65 51 36 29 22 19 15 11 09 04 59 46 33 27 21 18 14 11 08 03 55 43 31 25 19 16 12 10 08 03 51 39 29 24 18 15 11 09 07 02 47 37 27 22 17 14 10 08 06 02 ble are based on a length to width ratio of 1.6. Item of the state	9	6 52 38 31 25 21 16 14 11 05	61 40 36 30 93 40 45 49 40 04	50 46 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	53 42 33 28 22 18 14 11 08 04	49 40 30 25 19 16 12 10 07 03
	leare based on a length to width ratio of 1.6. How of the formation of 1.6.	9	5 51 36 29 22 19 15 11 09 04	59 46 33 27 21 18 14 11 08 03	55 43 31 25 19 16 12 10 08 03	52 40 31 26 20 16 12 10 07 03 51 30 20 24 18 15 11 00 07 02	48 39 29 24 18 15 11 09 07 03

Final Report: Signature Expression

CA	LCOLAII	OINS OI	I DERIVED QUAN				
	0	90 80 70 60 50 40 30 20 10 0	02 02 01 01 01 01 00 00 0 04 03 03 02 02 02 01 01 00 00 0 05 05 04 03 03 02 02 01 01 00 0 07 06 05 04 03 02 02 01 01 0 07 06 05 04 03 02 02 01 0 08 07 06 05 04 03 02 02 01 0	10 08 07 06 05 04 03 02 01 0 11 09 08 07 06 04 03 02 01 0 12 10 09 07 06 05 03 02 01 0 13 11 09 08 07 05 04 03 01 0 13 11 09 08 07 05 04 03 01 0 14 12 10 09 07 05 04 03 01 0	15 13 11 09 07 06 04 03 01 0 16 13 11 09 08 06 04 03 01 0 17 14 12 10 08 06 05 03 02 0 17 15 13 10 08 07 05 03 02 0 18 16 13 11 09 07 05 03 02 0	19 16 14 11 09 07 05 03 02 0 20 17 14 12 09 07 05 03 02 0 20 17 15 12 10 08 05 04 02 0 21 18 15 12 10 08 05 04 02 0 22 18 15 13 10 08 05 04 02 0 22 19 16 13 10 08 06 04 02 0 23 19 16 13 10 08 06 04 02 0 23 20 17 13 11 08 06 04 02 0 23 20 17 13 11 08 06 04 02 0 23 21 17 14 11 08 06 04 02 0 25 21 17 14 11 08 06 04 02 0	<i>27</i> 23 18 15 12 09 06 04 02 0 28 24 19 15 12 09 06 04 02 0 30 22 20 15 12 09 06 04 02 0 31 25 20 15 12 09 06 04 02 0 31 25 20 15 12 09 06 04 02 0 31 25 20 15 12 09 06 04 02 0
	10	90 80 70 60 50 40 30 20 10 0	11 11 11 10 10 10 10 09 09 09 12 11 11 11 10 10 09 09 08 13 13 12 11 11 10 10 09 08 08 15 14 13 12 11 10 10 09 08 08 15 14 13 12 11 10 10 09 08 07 16 14 13 12 12 11 10 00 08 07	17 15 14 13 12 11 10 09 07 06 18 16 14 13 12 11 10 09 07 06 19 17 15 14 12 11 09 08 07 06 19 17 15 14 13 11 09 08 06 05 19 17 15 14 13 11 09 08 06 05 20 18 16 14 13 11 09 08 06 05	21 19 16 14 13 11 09 07 06 05 22 19 17 15 13 11 09 07 06 05 23 20 17 15 13 11 09 07 06 04 23 20 17 15 13 11 09 07 06 04 23 20 18 16 13 11 09 07 05 03 24 21 18 16 13 11 09 07 05 03	25 21 18 16 13 11 09 07 05 03 26 22 18 16 13 11 09 07 05 03 26 22 19 16 13 11 09 07 05 03 27 23 19 17 14 11 09 06 04 02 27 23 20 17 14 11 09 06 04 02 28 24 20 17 14 11 09 06 04 02 29 25 20 17 14 11 08 06 04 02 29 25 20 17 14 11 08 06 04 02 29 25 20 17 14 11 08 06 04 02 30 25 20 17 14 11 08 06 04 02	31 26 21 18 14 11 08 06 03 01 32 27 21 17 13 11 08 06 03 01 33 27 21 17 13 10 07 05 03 01 34 28 21 17 13 10 07 05 02 01 34 28 21 17 12 10 07 05 02 01
e 9-27. Continued*	20	90 80 70 60 50 40 30 20 10 0	21 20 20 20 20 20 19 19 19 17 22 21 20 20 20 19 19 18 18 16 23 21 21 20 19 19 18 18 17 15 24 22 21 20 19 19 18 17 16 14 25 23 22 20 19 18 17 16 15 13	25 23 22 20 19 17 17 16 14 12 26 24 22 20 18 17 16 15 13 12 26 24 22 20 18 17 16 15 13 11 27 25 23 20 18 17 15 14 12 10 28 25 23 20 18 16 15 13 11 09	28 25 23 20 18 16 14 12 10 09 29 26 23 20 18 16 14 12 10 08 29 26 23 20 18 16 14 12 10 08 29 26 23 20 18 16 14 11 09 08 30 27 23 20 18 15 13 11 09 07 30 27 23 20 17 15 13 11 09 07	31 27 23 20 17 15 12 11 09 06 31 27 23 20 17 15 12 10 08 06 32 27 23 20 17 15 12 10 08 05 32 28 23 20 17 15 12 10 07 05 33 28 23 20 17 14 11 09 07 04 33 28 24 20 17 14 11 09 07 04 34 29 24 20 17 14 11 09 07 04 35 29 24 20 17 13 10 08 06 04 35 29 24 20 16 13 10 08 06 04	36 30 24 20 16 13 10 08 05 02 36 30 24 20 15 12 03 07 04 02 37 30 23 19 15 12 08 06 03 01 37 29 23 19 14 11 08 06 03 01 37 29 22 18 13 10 07 05 03 01
Figur	30	90 80 70 60 50 40 30 20 10 0	31 31 30 30 29 29 29 28 28 27 31 31 30 30 29 29 28 28 27 26 25 32 31 30 29 28 27 26 25 23 32 31 30 29 28 27 26 26 25 23 32 31 30 29 28 26 25 25 23 22 33 32 30 29 27 25 24 23 22 20	33 32 30 28 27 25 23 22 21 19 34 32 30 28 26 24 22 21 19 18 34 33 29 27 25 23 22 20 18 17 35 33 29 27 25 23 21 19 17 16 35 33 29 26 24 22 20 18 16 14	36 32 29 26 24 22 19 17 15 13 36 32 29 26 24 22 19 16 14 12 36 32 29 26 23 21 18 16 14 12 37 33 29 25 23 21 17 15 13 11 37 33 29 25 22 20 17 15 12 10	37 33 29 25 22 19 16 14 12 10 37 33 29 25 22 19 16 14 12 10 38 33 29 24 21 18 15 13 10 09 38 33 28 24 21 18 15 13 10 08 38 33 28 24 21 18 14 12 09 07 38 33 28 24 20 17 14 12 09 07 39 33 28 24 20 17 14 11 09 06 39 33 28 24 20 17 13 10 08 06 39 33 28 24 20 17 13 10 08 06 39 33 28 24 20 17 13 10 08 06 39 33 28 24 20 17 13 10 08 06 39 33 28 24 20 17 13 10 08 06	39 33 27 23 18 15 11 09 06 04 40 33 26 22 17 14 10 08 05 03 40 33 26 21 16 13 09 07 04 02 40 33 25 20 15 12 09 07 04 02 40 32 24 19 14 11 08 06 03 01 of 1.6.
	40	90 80 70 60 50 40 30 20 10 0	40 40 39 39 39 38 37 36 36 41 40 39 39 38 37 36 35 34 34 41 40 39 38 37 36 35 34 34 41 40 39 38 37 36 34 33 22 31 41 40 38 37 36 35 33 32 31 29 42 40 38 37 35 33 32 31 29 27	42 40 38 36 34 32 30 29 27 25 42 39 37 35 33 31 29 27 25 23 42 39 37 35 32 37 25 23 22 42 39 37 35 32 30 27 25 23 22 42 39 36 34 31 29 26 24 22 21 42 39 36 34 31 28 25 23 21 19	42 39 36 33 30 27 24 22 19 18 43 39 35 33 29 27 24 21 18 17 43 39 35 32 29 26 23 20 17 15 43 39 35 32 28 25 22 19 16 14 43 39 35 31 27 24 21 18 16 13	43 39 35 31 27 23 20 71 15 13 43 39 34 30 26 23 20 17 14 12 44 38 33 29 26 22 19 16 14 11 44 38 33 29 25 22 18 16 13 10 44 38 33 29 25 21 18 15 12 10 44 38 33 29 24 21 17 15 12 10 44 38 33 28 23 19 16 14 11 08 44 38 32 28 23 19 16 14 10 08 44 38 32 27 22 19 16 13 10 07 45 38 31 27 22 19 15 13 10 07	41 37 30 25 20 17 13 11 08 05 44 36 29 24 19 16 12 10 07 04 44 35 28 23 18 15 11 09 06 03 44 35 26 21 16 13 10 08 05 02 43 34 25 20 15 12 08 07 05 02 table are based on a length to width ratio or floor of cavity
	Percent Base† keflectance	ercent Wall Reflectance	Cavity Ratio 0.2 0.6 0.6 1.0	1.2 1.4 1.6 1.8 2.0	22 24 28 30 30	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.0 7.0 8.0 9.0 10.0 10.0